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DERANGEMENTS IN PRIMITIVE PERMUTATION GROUPS,

WITH AN APPLICATION TO CHARACTER THEORY

TIMOTHY C. BURNESS AND HUNG P. TONG-VIET†

Abstract. Let G be a finite primitive permutation group and let κ(G) be the number of
conjugacy classes of derangements in G. By a classical theorem of Jordan, κ(G) > 1. In
this paper we classify the groups G with κ(G) = 1, and we use this to obtain new results
on the structure of finite groups with an irreducible complex character that vanishes on
a unique conjugacy class. We also obtain detailed structural information on the groups
with κ(G) = 2, including a complete classification for almost simple groups.

1. Introduction

Let G be a transitive permutation group on a finite set Ω of size n > 2, and let H be
the stabiliser of a point. An element x ∈ G is a derangement if it acts fixed-point-freely
on Ω, or equivalently, if xG ∩H is empty, where xG is the conjugacy class of x in G. The
existence of derangements is guaranteed by a classical theorem of Jordan [37], and we will
write

∆(G) = G \
⋃

g∈G

Hg

for the set of derangements in G. As discussed by Serre [46], Jordan’s theorem has many
interesting applications in number theory and topology.

Various extensions and generalisations of Jordan’s theorem have been studied in recent
years. For example, let δ(G) = |∆(G)|/|G| be the proportion of derangements in G. By
a theorem of Cameron and Cohen [10], δ(G) > 1/n and equality holds if and only if G
is sharply 2-transitive (that is, either (G,n) = (S2, 2) or G is a Frobenius group of order
n(n−1) with n a prime power). Using the Classification of Finite Simple Groups (CFSG),
Guralnick and Wan [30] have established the better bound δ(G) > 2/n (with prescribed
exceptions), and a very recent theorem of Fulman and Guralnick (see [22, 23, 24, 25])
states that there is an absolute constant ǫ > 0 such that δ(G) > ǫ for any simple transitive
group G. This latter result confirms a conjecture of Boston et al. [4] and Shalev.

In a different direction, one can consider the existence of derangements of a given
order. By a theorem of Fein, Kantor and Schacher [17], G contains a derangement of
prime-power order (their proof requires CFSG), and this result has important number-
theoretic applications. However, G may not contain a derangement of prime order, and
in this situation we say that G is elusive. The first construction of elusive groups was
presented in [17]: let p be a Mersenne prime and take G = AGL1(p

2) and H = AGL1(p),
so n = p(p + 1) and G is elusive since all elements of order 2 or p are conjugate in G. In
[27], Giudici classifies the quasiprimitive elusive groups, and it follows that the 3-transitive
action of the smallest Mathieu group M11 on 12 points is the only almost simple primitive
elusive group. In [34], the transitive groups G in which all derangements are involutions
are determined; G is either an elementary abelian 2-group, or a Frobenius group with
kernel an elementary abelian 2-group.
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κ(G) (G,H)

1 (A5,D10), (L2(8):3,D18:3)

2 (A5,D6), (A5, A4), (S5,D12), (S5, S4), (A6, 3
2:4), (A6, A5), (S6, 3

2:D8)

(M10, [16]), (L2(7), 7:3), (L2(7), S4), (L3(4), 2
4:A5), (

2B2(8):3, 5:4× 3)

Table 1. κ(G) < 3, G almost simple primitive

In this paper, we are interested in the number of conjugacy classes of derangements
in G, which we denote by κ(G) (note that ∆(G) is a normal subset of G). By Jordan’s
theorem, κ(G) > 1. Our first result determines the primitive groups with κ(G) = 1, and
our second gives a stronger result for almost simple groups.

Theorem 1. Let G be a finite primitive permutation group with point stabiliser H. Then

κ(G) = 1 if and only if G is sharply 2-transitive, or (G,H) = (A5,D10) or (L2(8):3,D18:3).

Theorem 2. Let G be a finite almost simple primitive permutation group with point

stabiliser H. Then either κ(G) > 3, or (κ(G), G,H) is recorded in Table 1. Moreover,

κ(G) tends to infinity as |G| tends to infinity.

Note that in Table 1, we write G = A5 rather than L2(4) or L2(5). Similarly, we write
G = A6 rather than L2(9) or PSp4(2)

′, etc. In addition, in the final row we write [16] to
denote a Sylow 2-subgroup of M10 = A6 · 2.

By considering the cases in Table 1, we easily deduce the following corollary.

Corollary 3. Let G be a finite almost simple transitive permutation group with point

stabiliser H. Assume G is imprimitive. Then either κ(G) > 3, or κ(G) = 2 and (G,H) =
(A5,Z5).

We also investigate the structure of a general primitive permutation group G with
κ(G) = 2. A version of our main result is Theorem 4 below (see Section 4 for more
details). Hering’s classification [31, 32] of the 2-transitive affine permutation groups is a
key tool in the proof.

Theorem 4. Let G be a finite primitive permutation group of degree n with point stabiliser

H. If κ(G) = 2, then one of the following holds:

(i) (G,n) = (Z3, 3);

(ii) G is one of the almost simple groups recorded in Table 1;

(iii) G = HN is an affine group, where N is an elementary abelian p-group of order

n = pk, and one of the following holds:

(a) G is a Frobenius group with kernel N , p is odd and |H| = (n− 1)/2;

(b) G is a non-Frobenius 2-transitive group, and either G is recorded in Table 2,

or G is soluble, H 6 ΓL1(p
k), k is even and |H| = 2(n− 1).

Moreover, any group G as in (i), (ii), (iii)(a) or Table 2 has the property κ(G) = 2.

Remark 5. Let us make a couple of remarks on the statement of Theorem 4.

(a) In Table 2 we use the notation P(n, i) to denote the i-th primitive permutation
group of degree n in the library of primitive groups stored in Magma [3], which
can be accessed via the command PrimitiveGroup(n, i).

(b) Consider part (iii)(b) of Theorem 4, where H 6 ΓL1(p
k), k is even and |H| =

2(pk − 1). Here it is difficult to give a complete description of the possibilities for
G with the property κ(G) = 2, but we can show that κ(G) = 2 in the special case
H = GL1(p

k) · 2 (see Proposition 4.10).
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n G

22 22:S3
∼= S4 P(4, 2)

52 52:(21+2.6) P(52, 17)

112 112:(21+2.[30]) P(112, 42)

34 34:((2×Q8):2):5 P(34, 70)

292 292:(7× 2.SL2(5)) P(292, 104)

Table 2. Some affine 2-transitive groups G with κ(G) = 2

One of our main motivations stems from an application to the character theory of finite
groups. Let G be a finite nonabelian group and let χ ∈ Irr(G) be a nonlinear irreducible
complex character of G. A classical theorem of Burnside [33, Theorem 3.15] states that
χ(x) = 0 for some x ∈ G. In this situation, we say that χ vanishes at x, and x is called a
zero of χ. Since χ is a class function, it vanishes on the conjugacy class xG, and we write
n(χ) for the number of conjugacy classes of G on which χ vanishes. Therefore, Burnside’s
theorem states that n(χ) > 1 for all nonlinear χ ∈ Irr(G). In fact, by a theorem of Malle,
Navarro and Olsson [42], χ vanishes on some element of prime power order, and it is
interesting to note that their proof uses the aforementioned theorem of Fein, Kantor and
Schacher [17] on derangements in transitive permutation groups.

Several authors have investigated the structure of finite groups with a nonlinear irre-
ducible character χ such that n(χ) is small, and there has been particular interest in the
special case n(χ) = 1. For example, Zhmud’ [51] obtained partial results on the structure
of soluble groups with this property. In later work, Chillag [11, Corollary 2.4] proved
that if G 6= G′ then either G is a Frobenius group with an abelian odd-order kernel of
index two, or χ is irreducible upon restriction to G′. In fact, if G is any finite nonabelian
group such that n(χ) 6 1 for all χ ∈ Irr(G), then G is a Frobenius group with an abelian
odd-order kernel of index two (see [11, Proposition 2.7]; the proof uses CFSG). See [16]
and [44] for additional structural results on soluble groups with this extremal property.

Let us consider the general case: G is a finite nonabelian group with a nonlinear irre-
ducible character χ such that n(χ) = 1. Recall that χ ∈ Irr(G) is imprimitive if it can be
induced from a character of a proper subgroup of G, i.e., χ = φG for some φ ∈ Irr(H) and
proper subgroup H of G. Otherwise, χ is primitive.

Suppose χ ∈ Irr(G) is a nonlinear imprimitive irreducible character such that n(χ) = 1,
say χ = φG where φ ∈ Irr(H) and H is a proper subgroup of G. Set

∆H(G) := G \
⋃

g∈G

Hg.

Clearly, by definition of the induced character φG, if x ∈ ∆H(G) then χ(x) = 0 and thus
∆H(G) = xG. Note that the converse does not hold in general; the condition ∆H(G) = xG

does not imply that there is a character φ ∈ Irr(H) such that φG ∈ Irr(G) and n(φG) = 1.
For example, if (G,H) = (A5,D10) then ∆H(G) = xG by Theorem 1, but no character of
H can be irreducibly induced to G since |G : H| = 6 and χ(1) 6 5 for all χ ∈ Irr(G).

If we assume further that H is core-free and maximal, then G is a primitive permutation
group on Ω = G/H with κ(G) = 1, so in this situation the possibilities for G and H are
given by Theorem 1.

In general, the structure of G can be more complicated. In Theorem 6 below we describe
the normal structure of finite groups G with the property that n(χ) = 1 for some nonlinear
imprimitive irreducible character χ = φG, where φ ∈ Irr(H) for some maximal subgroup
H of G. In the statement of Theorem 6, recall that a finite group G is a Camina group if
|CG(x)| = |CG/G′(G′x)| for all x ∈ G \G′.
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Theorem 6. Let H be a maximal subgroup of a finite group G such that n(χ) = 1 for a

nonlinear imprimitive irreducible character χ = φG with φ ∈ Irr(H). Write ∆H(G) = xG

and let N = HG denote the normal core of H. Then one of the following holds:

(i) G is a Frobenius group with an abelian odd-order kernel H = G′ of index two.

(ii) G/N is a 2-transitive Frobenius group with an elementary abelian kernel M/N of

order pn for some prime p and integer n > 1, and a complement H/N of order

pn − 1. Moreover, xG = M \ N , |CG(x)| = pn, |xG| = |H|, M ′ = N and one of

the following holds:

(a) M is a Frobenius group with kernel M ′ and pn = p > 2.

(b) M is a Frobenius group with kernel K P G such that G/K ∼= SL2(3) and

M/K ∼= Q8.

(c) M is a Camina p-group.

(iii) G/N ∼= L2(8):3, H/N ∼= D18:3, N is a nilpotent 7′-group and CG(x) = 〈x〉 ∼= Z7.

(iv) G/N ∼= A5, H/N ∼= D10, N is a 2-group and CG(x) = 〈x〉 ∼= Z3.

In particular, if G = G′ then either case (ii)(c) holds with pn = 112 and G/N ∼= 112:SL2(5),
or case (iv) holds.

Remark 7. Let us make some remarks on the statement of Theorem 6.

(a) Firstly, observe that there is no loss in assuming that H is a maximal subgroup
of G. Indeed, if n(χ) = 1 and χ = λG for some λ ∈ Irr(J) and proper subgroup
J < G, then χ = (λH)G = φG, whenever J 6 H < G with φ = λH ∈ Irr(H).

(b) For imprimitive characters, Theorem 6 extends several known results in the lit-
erature. For example, the conclusion in part (i) coincides with the first part of
[11, Corollary 2.4], and parts (i) and (ii)(a,b) are exactly the conclusions (1)-(3) in
[44, Theorem 1.1] (see also [16, Theorem 9]). It is worth noting that the relevant
results in [16, 44] only apply in the case G is soluble, whereas Theorem 6 holds for
any finite group G.

(c) In Section 5 we prove Theorem 6 under a weaker assumption, namely, we only
require that G is a finite subgroup with a maximal subgroupH such that ∆H(G) =
xG for some x ∈ G.

(d) In parts (iii) and (iv), we note that the core N = HG is nontrivial since the index
|G : H| is larger than any character degree of G/N .

(e) This structure theorem is an important step towards a complete classification of
the finite groups with a nonlinear irreducible character that vanishes on a unique
conjugacy class. Indeed, in a forthcoming paper, we study the structure of the
groups arising in parts (ii)(c), (iii) and (iv) in more detail, and we will also consider
the primitive case in future work.

Finally, let us make some comments on the notation and organisation of the paper. Our
group-theoretic notation is fairly standard. In particular, we use the notation of Kleidman
and Liebeck [39] for simple groups and their automorphism groups; for example, we write
Ln(q) and Un(q) for PSLn(q) and PSUn(q), respectively. We use Zn, or just n, to denote
a cyclic group of order n, and (a, b) denotes the highest common factor of the positive
integers a and b.

In Section 2 we establish a useful result that immediately reduces the proof of Theorem
1 to almost simple groups. We focus on the almost simple groups in Section 3, where we
complete the proofs of Theorem 1 and 2. The structure of the primitive groups G with
κ(G) = 2 is investigated in Section 4, and we establish Theorem 4. Finally, in Section 5
we prove Theorem 6 on the finite groups G with a maximal subgroup H and a nonlinear
imprimitive irreducible character χ = φG such that n(χ) = 1 and φ ∈ Irr(H).
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2. A reduction theorem

Let G 6 Sym(Ω) be a transitive permutation group of degree n with point stabiliser
H = Gα. Recall that G is a Frobenius group if G is not regular and only the identity
element has more than one fixed point (equivalently, H 6= 1 and H ∩ Hg = 1 for all
g ∈ G\H). In this situation, N := {1}∪∆(G) is a regular normal subgroup of G (see [33,
Theorem 7.2], for example) and we have G = HN and H∩N = 1 (we call N the Frobenius
kernel of G). Since H acts semiregularly on Ω \ {α} it follows that |G| = n(n − 1)/d,
where d divides n− 1 (d is the number of H-orbits on Ω \ {α}). If G is 2-transitive, i.e., if
H acts transitively on Ω \ {α}, then d = 1 and it follows that any two nontrivial elements
of N are conjugate in G (so N is an elementary abelian p-group for some prime p, and n
is a power of p). In particular, if G is a 2-transitive Frobenius group then κ(G) = 1.

Also recall that G is sharply 2-transitive if G acts regularly on the set of pairs of distinct
elements of Ω (so G is 2-transitive and no nontrivial element of G fixes more than one
point). In particular, G is sharply 2-transitive if and only if (G,n) = (S2, 2) or G is a 2-
transitive Frobenius group. As noted above, the latter groups are precisely the Frobenius
groups of order n(n− 1) with n a prime power.

Given a group X, we write X∗ = X \ {1} for the set of nontrivial elements in X.

Theorem 2.1. Let G 6 Sym(Ω) be a finite primitive permutation group and assume G is

not almost simple. Then κ(G) = 1 if and only if G is sharply 2-transitive.

Proof. Let H = Gα be a point stabiliser of G and let n = |G : H| denote the degree
of G. Suppose G is sharply 2-transitive. The case (G,n) = (S2, 2) is clear so let us
assume G is a 2-transitive Frobenius group with kernel N . Here ∆(G) = N∗ and H
acts regularly on Ω \ {α}, so |H| = n − 1. Let x ∈ N∗. Then CG(x) 6 N and thus
|xG| > |G : N | = |H| = |N∗|. Since N is normal we have xG ⊆ N∗, so ∆(G) = N∗ = xG

and κ(G) = 1.
Conversely, suppose κ(G) = 1. Let N be a minimal normal subgroup of G and note

that N is transitive and G = HN . There are two cases to consider.
First assume N is regular, so H ∩ N = 1 and N∗ ⊆ ∆(G). In fact, since κ(G) = 1,

we have N∗ = xG = ∆(G) for some x ∈ N∗. If N is nonabelian, then it is isomorphic to
a direct product of isomorphic nonabelian simple groups and hence |N | is divisible by at
least three distinct primes, which is a contradiction since N∗ = xG. Therefore N is abelian
and so N ∼= Zk

p for some prime p and integer k > 1. In particular, N 6 CG(x). Now
|∆(G)| > |H| by [10], with equality if and only if G is sharply 2-transitive. Therefore,
|xG| = |G : CG(x)| > |H| and thus |N | > |CG(x)|, so CG(x) = N and G is sharply
2-transitive.

Now assume H ∩N 6= 1. It follows that N ∼= Sk, where S is a nonabelian simple group
and k > 1. By [15, Corollary 4.3B], N is the unique minimal normal subgroup of G. If
k = 1 then G is almost simple as CG(N) = 1. So assume that k > 2. Let πi denote the
projection map from H ∩ N to the i-th simple factor of N . As noted in the proof of [8,
Theorem 2.1], there exists a nontrivial subgroup R of S such that πi(H ∩N) ∼= R for all
1 6 i 6 k.

If R = S, then there exists a partition P of {1, 2, . . . , k} such that H ∩N =
∏

P∈P DP ,
where DP

∼= S and πi(DP ) = S if i ∈ P , otherwise πi(DP ) = 1. For each P ∈ P, let
NP be a subgroup given by the direct product of |P | − 1 of the simple direct factors of N
corresponding to P . Then N0 :=

∏

P∈P NP 6 N has trivial intersection with H and has
order |Ω|. In particular, N0 is a regular subgroup whose order is divisible by |S|. Since |S|
is divisible by at least three distinct primes, it follows that N0 has at least three elements
of distinct prime orders and thus κ(G) > 3, a contradiction.

Finally, suppose R 6= S. By [15, Theorem 4.6A], G 6 L ≀ Sk acting with its product
action on Ω = Γk for k > 2, where L 6 Sym(Γ) is a primitive almost simple group with
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socle S. If u ∈ S is a derangement on Γ then (u, 1, 1, . . . , 1), (u, u, 1, . . . , 1) ∈ N are non-
conjugate derangements on Ω, so κ(G) > 2. This final contradiction completes the proof
of the theorem. �

3. Almost simple groups

In this section we will prove Theorem 2. Let G be a finite almost simple primitive
permutation group with socle S. Let A = Aut(S), so S 6 G 6 A. In order to establish
the bound κ(G) > 3 it suffices to show that if H is a maximal subgroup of S then there are
at least three A-classes of elements x ∈ S such that xA ∩H is empty. Similarly, to justify
the asymptotic statement in Theorem 2, we will show that the number of such A-classes
tends to infinity as |S| tends to infinity.

In view of Theorem 2.1, we see that Theorem 1 follows immediately from Theorem 2.
Similarly, Corollary 3 is easily deduced from Theorem 2.

3.1. Preliminaries. Here we record some preliminary results that will be useful in the
proof of Theorem 2. Let φ : N → N be Euler’s totient function defined by

φ(n) = |{m ∈ {1, . . . , n− 1} | (m,n) = 1}|.
We will need the following elementary lower bound.

Lemma 3.1. If n ∈ N then φ(n) >
√

n/a, where a = 2 if n ≡ 2 (mod 4), otherwise a = 1.

Proof. Write n =
∏

i p
ai
i , where the pi are distinct primes, so

φ(n) =
∏

i

φ(paii ) =
∏

i

pai−1
i (pi − 1).

If n 6≡ 2 (mod 4) then (pi, ai) 6= (2, 1), so pai−1
i (pi − 1) > p

ai/2
i and thus φ(n) >

√
n.

Similarly, if n ≡ 2 (mod 4) then n = 2m andm is odd, so φ(n) = φ(m) >
√
m =

√

n/2. �

Lemma 3.2. Let x ∈ S be a self-centralising element of order α with |NS(〈x〉) : 〈x〉| = n.
Then there are at least φ(α)/n|Out(S)| distinct A-classes of such elements in S.

Proof. There are precisely φ(α) elements in 〈x〉 of order α, and for any such element y we
note that |yS∩〈x〉| = n since CS(x) = 〈x〉 and |NS(〈x〉) : 〈x〉| = n. Therefore, 〈x〉 contains
φ(α)/n distinct S-class representatives of order α, so there are at least φ(α)/n|Out(S)|
distinct A-classes. �

If S is a simple group of Lie type then |Out(S)| is conveniently recorded in [39, Tables
5.1.A, 5.1.B].

Finally, let us introduce some additional notation. Let G be an almost simple group
with socle S and let M(G) be the set of maximal subgroups H of G such that G = SH.
Given H ∈ M(G), let κ(G,H) denote the number of conjugacy classes of derangements
in G, with respect to the primitive action of G on G/H. We define

Φ(G) = min{κ(G,H) | H ∈ M(G)}. (1)

In addition, if X is a finite group then π(X) denotes the set of prime divisors of |X|.

3.2. Sporadic groups. Here we establish Theorem 2 for sporadic groups. Set

A = {HS.2,He.2,Fi22.2,HN.2,O′N.2,Fi24,B,M}.
Proposition 3.3. The conclusion to Theorem 2 holds if S is a sporadic simple group and

G 6∈ A.
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G M11 M22 M12 J1 HS M22.2 M23 J2 M12.2 M24 J3 McL McL.2 J2.2 O′N

Φ(G) 3 4 5 5 5 6 6 6 7 7 7 7 7 8 9

Co3 J3.2 Th Co2 He Ru Ly Fi22 Fi23 Suz J4 HN Suz.2 Fi′24 Co1

10 11 11 12 13 13 14 14 15 15 17 19 21 26 27

Table 3. Φ(G) for some almost simple sporadic groups

Proof. In each case it is straightforward to calculate the exact value of κ(G,H) using the
information on the fusion of H-classes in G that is available in the GAPCTL Character
Table Library [5]. For example, we obtain the following results when G = M11:

H M10 L2(11) M9.2 S5 2.S4

κ(G,H) 3 3 3 4 3

In all cases, the exact value of Φ(G) (see (1)) is recorded in Table 3. �

Proposition 3.4. The conclusion to Theorem 2 holds if S is a sporadic simple group.

Proof. We may assume G ∈ A. If G ∈ {HS.2,He.2,Fi22.2} we can use Magma [3] to
determine the fusion of H-classes in G, working with the respective permutation repre-
sentations of degree 100, 2058 and 3510 provided in the Web-Atlas [50]. In this way, we
calculate that Φ(HS.2) = 11, Φ(He.2) = 16 and Φ(Fi22.2) = 17.

Of course, we can immediately discard any remaining cases (G,H) with the property
that |π(G) \π(H)| > 3, which eliminates the Baby Monster and the Monster. In fact, one
can check that it only remains to deal with the following cases:

(1) (HN.2, S12) (2) (HN.2, 4.HS.2) (3) (HN.2,U3(8):6)
(4) (HN.2, (5:4×U3(5)).2) (5) (O′N.2, J1 × 2) (6) (Fi24,Fi23 × 2)

In cases (1) – (3), the fusion of H-classes in G is stored in [5] and the result quickly follows
as above (we get κ(G,H) = 31, 23, 57, respectively). In (4) and (6), [8, Proposition 4.3]
implies that G contains at least three classes of derangements of prime order. For example,
in (6) we find that G contains derangements of order 3, 7 and 29. Similarly, in case (5), G
contains derangements of order 7 and 31, and elements of order 14 are also derangements
since |H| is indivisible by 14. �

3.3. Alternating groups. In this section we establish Theorem 2 in the case where
S = An is an alternating group of degree n > 5.

Proposition 3.5. The conclusion to Theorem 2 holds if S = An and n 6 24.

Proof. We can use Magma [3] to determine the fusion of H-classes in G, and the re-
sult quickly follows. For instance, we obtain the results presented in Table 4 if G ∈
{A5, S5, A6, S6}. In addition, we calculate that Φ(G) = 4 if G = PGL2(9) = A6.2 or
Aut(A6) = A6.2

2, and if G = M10 = A6.2 we get κ(G, [16]) = 2 (where [16] is a Sylow
2-subgroup of G), κ(G, 32:Q8) = 3 and κ(G, 5:4) = 4. For 7 6 n 6 24 we record Φ(G) in
Table 5. �

Proposition 3.6. The conclusion to Theorem 2 holds if S = An.

Proof. We may assume that n > 24. Let H be a maximal subgroup of G such that
G = SH. We consider three cases according to the action of H on {1, . . . , n}:

(a) H acts primitively on {1, . . . , n};
(b) H acts transitively and imprimitively on {1, . . . , n};
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κ(G,H) (G,H)

1 (A5, D10)

2 (A5, D6), (A5, A4), (S5, D12), (S5, S4), (A6, 3
2:4), (A6, A5), (S6, 3

2:D8)

3 (S5, 5:4), (A6, S4), (S6, S4 × 2)

4 (S6, S5)

Table 4. κ(G,H) for G ∈ {A5, S5, A6, S6}

n 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Φ(An) 3 5 5 7 7 11 12 15 18 22 26 31 38 46 55 62 74 88

Φ(Sn) 4 5 7 9 11 15 19 23 30 35 44 50 65 80 95 111 133 157

Table 5. Φ(G) for G ∈ {An, Sn}, 7 6 n 6 24

(c) H acts intransitively on {1, . . . , n}.
In case (a), let x ∈ G be an r-cycle, where r is a prime such that 2 6 r < n− 2. Then

a theorem of Jordan [38] implies that x is a derangement, whence κ(G,H) > 3.
Next assume (b) holds, so H is of type Sa ≀ Sb, where n = ab and a, b > 2. Let r be

a prime in the interval (a, n). As noted in the proof of [8, Proposition 3.6], any r-cycle
in G is a derangement. Now, if a > 9 then there are at least three distinct primes in the
interval (a, 2a) (see [45], for example) and the result follows (we also note that the number
of primes in (a, 2a) tends to infinity as a tends to infinity). Similarly, if a < 9 then b > 4
(since n > 24) and there are at least three primes in (a, 4a) for all a > 2.

Finally, let us consider (c), so H is of type Sk ×Sn−k with 1 6 k < n/2. Clearly, if n is
even then any x ∈ G of cycle-shape (ℓ, n− ℓ), where 1 6 ℓ 6 n/2, ℓ 6= k, is a derangement.
Now assume n is odd. If k 6= 3 then any x ∈ G of cycle-shape (3, ℓ, n − ℓ − 3), where
1 6 ℓ 6 (n− 3)/2, ℓ 6∈ {k, k − 3}, is a derangement. Similarly, if k = 3 then take x ∈ G of
cycle-shape (5, ℓ, n − ℓ− 5), where 1 6 ℓ 6 (n− 5)/2 and ℓ 6= 3. The result follows.

In each case, note that we have also shown that κ(G,H) tends to infinity as |G| tends
to infinity. �

For the remainder, we may assume that S is a group of Lie type; we deal with the ex-
ceptional groups in Section 3.4 and the classical groups in Section 3.5. Our basic approach
is similar in both cases. The aim is to identify a collection of elements in G that belong to
very few maximal subgroups – if we can show that there are at least three A-classes of such
elements (and the number of such classes tends to infinity as |G| tends to infinity), then
it just remains to deal with the specific possibilities for H that contain these elements.
Given such a subgroup H, we choose an alternative collection of elements x ∈ G such that
xA ∩H is empty, and we then show that there are sufficiently many A-classes with this
property. For some groups of low rank over small fields, we will use Magma [3] to obtain
the desired result.

3.4. Exceptional groups. Let S be a finite simple group of exceptional Lie type over
Fq, where q = pf and p is a prime. Set

A = {G2(3), G2(4), G2(5),
2B2(8),

2B2(32),
2G2(27),

3D4(2),
2F4(2)

′}.
Proposition 3.7. If S ∈ A then either κ(G,H) > 4, or (G,H) = (2B2(8):3, 5:4× 3) and
κ(G,H) = 2.

Proof. This is a straightforward calculation, using Magma and a suitable permutation
representation of G given in the Web-Atlas [50]. �
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S |x1| n1 |x2| n2 M(x1)
2B2(q), q > 27 q +

√
2q + 1 4 q −√

2q + 1 4 〈x1〉:Z4

2G2(q), q > 35 q +
√
3q + 1 6 q −√

3q + 1 6 〈x1〉:Z6

2F4(q), q > 23 q2 +
√

2q3 + q +
√
2q + 1 12 q2 −

√

2q3 + q −√
2q + 1 12 〈x1〉:Z12

3D4(q), q > 3 q4 − q2 + 1 4 (q3 − 1)(q + 1) 4 〈x1〉:Z4

2E6(q), q > 4 (q6 − q3 + 1)/a 9 (q5 + 1)(q − 1)/a 10 SU3(q
3).3

G2(q), q > 9 q2 − q + 1 6 q2 + q + 1 6 SU3(q).2

F4(q), q > 4 q4 − q2 + 1 12 q4 + 1 8 3D4(q).3

E6(q) (q6 + q3 + 1)/b 9 (q + 1)(q5 − 1)/b 10 SL3(q
3).3

E7(q), q > 4 (q + 1)(q6 − q3 + 1)/c 18 (q − 1)(q6 + q3 + 1)/c 18 (Z(q+1)/c.
2E6(q)).2

E8(q) q8 + q7 − q5 − q4 − q3 + q + 1 30 q8 − q7 + q5 − q4 + q3 − q + 1 30 〈x1〉:Z30

a = (3, q + 1), b = (3, q − 1), c = (2, q − 1)

Table 6.

For the remainder, we may assume that S 6∈ A.

Proposition 3.8. The conclusion to Theorem 2 holds if S is one of the simple groups

listed in Table 6.

Proof. Let S be one of the simple groups listed in Table 6. First we claim that there exist
elements x1, x2 ∈ S with the following properties:

(i) x1 and x2 are self-centralising;

(ii) |xi| (the order of xi) and |NS(〈xi〉) : 〈xi〉| = ni are given in Table 6;

(iii) Let M(x1) be the set of maximal subgroups of S containing x1, up to isomorphism.
Then M(x1) is given in the final column of Table 6.

Detailed information on the conjugacy classes in S is readily available in the literature,
and the existence and self-centralising nature of x1 and x2 can be quickly verified. In
each case, 〈xi〉 is a maximal torus of S and the indices ni are easily computed. Indeed, if
S 6= E7(q) then n1 is given in [1, Table 1], and the same table also records n2 in the cases
S ∈ {2B2(q),

2G2(q),
2F4(q), E8(q)}. If S = 3D4(q) then n2 is given in [14, Table 1.1]. In

the remaining cases we have S = Eǫ
6(q) or E7(q), and the ni can be read off from [18].

More precisely, if S = Eǫ
6(q) then x2 corresponds to the case labelled w16 on [18, p.103],

where n2 is denoted “cn”. Similarly, if S = E7(q) then x1 and x2 are the cases labelled
w56 and w47 on [18, p.134,135], respectively. Finally, the information on M(x1) is taken
from [49, Section 4] (see also [28, Table III]).

The argument in each case is very similar. For example, suppose S = E6(q). Define
xi, ni, b as in Table 6 and note that |Out(S)| = 2b logp q. Let H be a maximal subgroup
of S and recall that it suffices to show that there are at least three A-classes in S that fail
to meet H (and that the number of such classes tends to infinity as |S| tends to infinity).

Set αi = |xi| and let ai be the number of distinct A-classes of elements in S of order αi.
By Lemmas 3.1 and 3.2 we have

a1 >

⌈

φ(α1)

18b logp q

⌉

>

√
α1

18b logp q
,

so a1 > 3, and we observe that a1 tends to infinity as q tends to infinity. Now x1 belongs
to a unique maximal subgroup of S, which is isomorphic to SL3(q

3).3 (see [49, p.78–79]).
Therefore, it remains to deal with the case H = SL3(q

3).3. Since |H| is indivisible by α2,
it follows that any element of order α2 is a derangement, and as before we deduce that

a2 >

⌈

φ(α2)

20b logp q

⌉

>

√

α2/2

20b logp q
.
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S Conditions

Linear Ln(q) n > 2, q > 7 (q 6= 9) if n = 2, (n, q) 6= (3, 2), (4, 2)

Unitary Un(q) n > 3, (n, q) 6= (3, 2)

Symplectic PSp2m(q) m > 2, (m, q) 6= (2, 2), (2, 3)

Orthogonal PΩ±
2m(q) m > 4

Ω2m+1(q) m > 3, q odd
Table 7. The simple classical groups

The result follows. The other cases are entirely similar, and we omit the details. �

Proposition 3.9. The conclusion to Theorem 2 holds if S is an exceptional group of Lie

type.

Proof. We may assume that S ∈ B, where B is defined as follows:

B = {G2(7), G2(8),
2E6(2),

2E6(3), F4(2), F4(3), E7(2), E7(3)}.
If S ∈ {G2(7),

2E6(3), F4(3), E7(3)} then the argument in the proof of Proposition 3.8
goes through unchanged (see [28, Table IV]). In each of the remaining cases, we define
xi, ni, αi, ai as before. Let H be a maximal subgroup of S.

Suppose S = G2(8), so α1 = 57 and α2 = 73. Since a2 > φ(α2)/18 = 4 we may assume
that H = SL3(8).2 since no other maximal subgroups of S contain elements of order 73
(the maximal subgroups of S are determined in [13]). Since a1 > 2 and |H| is indivisible
by α1 and 19, the result follows.

Next suppose S = 2E6(2). Note that the list of maximal subgroups H of S given in the
Atlas [12] is complete (see [36, p.304]). If |π(S) \ π(H)| > 3 then we are done, so we may
assume that H ∈ {F4(2),Fi22,Ω

−
10(2)}. In each of these cases, the fusion of H-classes in

S is available in the GAPCTL Character Table Library [5], and the desired result quickly
follows.

The case S = F4(2) is very similar. Here the maximal subgroups of S are determined in
[43]. If H = (21+8 × 26).Sp6(2) or Sp8(2) then the fusion of H-classes in S is stored in [5]
and we easily deduce that κ = 12, 33 in these cases. If |π(S) \ π(H)| > 3 then the result
follows, so it remains to deal with the cases H ∈ {L4(3):2,

2F4(2),
3D4(2):3,Ω

+
8 (2):S3}. In

all four cases it is easy to check that H contains no elements of order 32, but there are
four A-classes of such elements, so κ > 4 in each of these cases.

Finally, let us assume S = E7(2). Following [28, Table IV], let x ∈ S be an element of
order α = 27 + 1 = 129. Then CS(x) = 〈x〉 and |NS(〈x〉) : 〈x〉| = 14 (see the case labelled
w57 in [18, p.120]), so Lemma 3.2 implies that there are at least φ(α)/14 = 6 distinct A-
classes of such elements. Moreover, [28, Table IV] indicates that x is contained in a unique
maximal subgroup SU8(2) of S. Therefore, we may assume that H = SU8(2). Now |H|
is indivisible by β = 27 − 1 = 127 and we calculate that there are at least φ(127)/14 = 9
distinct A-classes of elements of order 127. The result follows. �

3.5. Classical groups. In order to complete the proof of Theorem 2, we may assume
that S is one of the classical groups listed in Table 7. The conditions recorded in the final
column ensure that S is simple, and that S is not isomorphic to one of the other groups in
the table, or to one of the groups we have already considered (see [39, Proposition 2.9.1],
for example). We will write L+

n (q) = Ln(q) and L−
n (q) = Un(q) to denote PSLn(q) and

PSUn(q), respectively. Let V be the natural S-module and set A = Aut(S).
As before, it suffices to show that if H is a maximal subgroup of S then there are

at least three A-classes of elements x ∈ S such that xA ∩ H is empty (and that the
number of such A-classes tends to infinity as |S| tends to infinity). As in the previous
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section, we will identify a sufficient number of A-classes of elements that belong to a
very restricted collection of maximal subgroups (in almost all cases, these will be regular
semisimple elements). In order to do this, we will use several results from [6, 28], which
rely on the earlier analysis of primitive prime divisors in [29]. It then remains to deal
with the primitive groups that correspond to this very specific list of maximal subgroups,
and we will identify an alternative collection of A-classes of derangements. As before, it
is convenient to use Magma for some low-dimensional groups over small fields.

3.5.1. Linear and unitary groups. Here we assume S = Lǫ
n(q). Set d = (n, q − ǫ) and

e = d(q − ǫ).

Proposition 3.10. The conclusion to Theorem 2 holds if S is one of the following:

L2(q), q 6 81; L3(q), q 6 16; L4(q), q 6 9; L5(2); L7(2); L11(2)

U3(q), q 6 11; U4(q), q 6 7; U5(2); U6(2); U8(2); U8(3); U9(2); U12(2).

Proof. This is a straightforward verification. For example, suppose S = L2(q). If 16 <
q 6 81 then an easy Magma calculation shows that if H is a maximal subgroup of S then
there are at least three A-classes of elements in S that fail to meet H. If 7 6 q 6 16
then we consider each possibility for G in turn, using Magma to compute κ(G,H) for
each maximal subgroup H of G (with G = SH). The other linear groups with n 6 5 are
handled in the same way. If S = L7(2) then any element of order 27 − 1 is a derangement,
unless H is a field extension subgroup of type GL1(2

7), in which case elements of order
26 − 1 are derangements. The case S = L11(2) is entirely similar.

The argument for the unitary groups Un(q) with n < 8 is similar. If S = U8(q) then [6,
Proposition 5.22] implies that any element of order (q7+1)/d is a derangement unless H is
a P1 parabolic subgroup (the stabiliser of a totally singular 1-space), in which case we can
take any element of order (q5 + 1)(q3 + 1)/e. Similarly, if S = U12(2) then by considering
elements of order (211 + 1)/3 we reduce to the case H = P1, for which all elements of
order (27+1)(25+1)/9 are derangements. Finally, if S = U9(2) then any element of order
(29 +1)/9 is a derangement unless H is a field extension subgroup of type GU3(8). In the
latter case, elements of order (28 − 1)/3 are derangements. �

Proposition 3.11. The conclusion to Theorem 2 holds if S = Lǫ
n(q) is one of the groups

listed in Table 8.

Proof. This is similar to the proof of Proposition 3.8. We may assume that S is not one
of the groups in the statement of Proposition 3.10. There are several cases to consider.

First assume ǫ = + and n = 2m is even, where m > 3 is odd. Let T = 〈x1〉 be a
cyclic maximal torus of S of order α1 = (qm+2 − 1)(qm−2 − 1)/e (see [7, Theorem 2.1], for
example), so x1 is self-centralising and |NS(〈x1〉) : 〈x1〉| = m2 − 4. Let a1 be the number
of distinct A-classes of elements in S of order α1. By applying Lemmas 3.1 and 3.2, we
deduce that

a1 >

⌈

φ(α1)

(m2 − 4) · 2d logp q

⌉

>

√

α1/2

2d(m2 − 4) logp q
.

It follows that a1 > 3, and we also see that a1 tends to infinity as |S| tends to infinity.
Now x1 belongs to exactly two maximal subgroups of S; parabolic subgroups of type

Pm−2 and Pm+2 (see [28, Table II]). Therefore, in order to establish Theorem 2 in this
case, we may assume that H = Pm−2. Let x2 ∈ S be an element of order α2 = (qn − 1)/e.
Then x2 is self-centralising, |NS(〈x2〉) : 〈x2〉| = n and x2 is a derangement since it acts
irreducibly on V . If a2 is the number of A-classes of such elements then

a2 >

⌈

φ(α2)

2m · 2d logp q

⌉

>

√

α2/2

4md logp q

and the result follows.



12 TIMOTHY C. BURNESS AND HUNG P. TONG-VIET†

Conditions on S = Lǫ
n(q) |x1| n1 |x2| n2

n = 2m, m > 4− ǫ odd (qm+2 − ǫ)(qm−2 − ǫ)/e m2 − 4 (qn − 1)/e n

n = 2m, m > 3− ǫ even, (qm+1 − ǫ)(qm−1 − ǫ)/e m2 − 1 (qn − 1)/e n

(ǫ,m, q) 6= (+, 2, 2)

n = 2m+ 1, m > 2, ǫ = +, (qm+1 − 1)(qm − 1)/e m(m+ 1) (qn − 1)/e n

(m, q) 6= (5, 2)

n = 2m+ 1, m > 5 odd, ǫ = − (qm+2 + 1)(qm−1 − 1)/e (m+ 2)(m− 1) (qn + 1)/e n

n = 2m+ 1, m > 4 even, ǫ = − (qm+1 + 1)(qm − 1)/e m(m+ 1) (qn + 1)/e n

e = (q − ǫ)(n, q − ǫ)

Table 8.

The other cases in Table 8 are very similar. In each case we take x1 ∈ S of the given
order, noting that x1 is self-centralising and |NS(〈x1〉) : 〈x1〉| = n1. As above, we estimate
the number of A-classes of such elements, and we appeal to [28, Table II] to see that the
only maximal subgroups of S containing x1 are reducible. To complete the proof, we now
switch to the self-centralising elements x2, as indicated in Table 8, and we repeat the
above argument. �

Proposition 3.12. The conclusion to Theorem 2 holds if S is a linear or unitary group.

Proof. It remains to deal with the possibilities for S listed in Table 9, and we proceed as
in the proof of the previous proposition. For example, suppose S = L2(q). Let x1 ∈ S
be an element of order α1 = (q2 − 1)/e. Then x1 is self-centralising and the number of
distinct A-classes of such elements, denoted by a1, satisfies the bound

a1 >

⌈

φ(α1)

2 · d logp q

⌉

>

√

α1/2

2d logp q
.

In particular, a1 tends to infinity as |S| tends to infinity, and we calculate that a1 > 3 since
q > 83. Now x1 belongs to a unique maximal subgroup of S, namely H = NS(〈x1〉) (see
[28, p.767]). Let x2 ∈ S be an element of order α2 = (q − 1)2/e and let a2 be the number
of A-classes of such elements. Note that x2 is a derangement since |H| is indivisible by
α2. Then

a2 >

⌈

φ(α2)

2 · d logp q

⌉

>

√

α2/2

2d logp q

and thus a2 > 3 if q > 125. In fact, if 81 < q 6 125 then an easy Magma calculation
shows that a2 > 4. The result follows.

The other cases in Table 9 are handled in the same way, using the information in [28,
p.767] (in each case, note that |x1| and |x2| are coprime). We omit the details. �

3.6. Symplectic groups. Here we assume S = PSp2m(q), where m > 2 and (m, q) 6=
(2, 2), (2, 3) (since PSp4(2)

′ ∼= A6 and PSp4(3)
∼= U4(2)). Set d = (2, q − 1).

We will frequently refer to the regular semisimple elements xi ∈ S defined in Table
10. In the second column, we give an orthogonal decomposition of the natural S-module
V that is fixed by xi, with xi acting irreducibly on each nondegenerate subspace in the
decomposition (the same notation is used in [6, 28]). The order αi of a lift x̂i ∈ Sp2m(q) of
xi is given in the next column, and in the final column we record a lower bound ai > βi,
where ai denotes the number of A-classes of elements in S with the same shape and order
as xi (the lower bound follows from the fact that two semisimple elements in Sp2m(q) are
conjugate if and only if they have the same multiset of eigenvalues in F̄q).
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S |x1| n1 |x2| n2

L2(q), q > 83 (q2 − 1)/e 2 (q − 1)2/e 2

L3(q), q > 17 (q3 − 1)/e 3 (q2 − 1)(q − 1)/e 2

U3(q), q > 13 (q3 + 1)/e 3 (q2 − 1)(q + 1)/e 2

U4(q), q > 8 (q3 + 1)(q + 1)/e 3 (q4 − 1)/e 4

U5(q), q > 3 (q5 + 1)/e 5 (q4 − 1)(q + 1)/e 4

U6(q), q > 3 (q5 + 1)(q + 1)/e 5 (q6 − 1)/e 6

U7(q) (q7 + 1)/e 7 (q6 − 1)(q + 1)/e 6

e = (q − ǫ)(n, q − ǫ)

Table 9.

Decomposition αi βi

x1 2m qm + 1 φ(qm + 1)/2me

x2 2 ⊥ (2m− 2) lcm(q + 1, qm−1 + 1) φ(q + 1)φ(qm−1 + 1)/2(2m − 2)e

x3 4 ⊥ (2m− 4) lcm(q2 + 1, qm−2 + 1) φ(q2 + 1)φ(qm−2 + 1)/4(2m − 4)e

d = (2, q − 1), e = 2δd logp q, δ = 1 if m = p = 2 and δ = 0 otherwise

Table 10.

Proposition 3.13. The conclusion to Theorem 2 holds if S is one of the following:

PSp4(q), q 6 8; PSp6(q), q 6 3; Sp8(2); Sp10(2); Sp12(2); Sp14(2).

Proof. Set S = PSp2m(q). In the cases with m 6 5 we can use Magma to compute
κ(G,H) for every maximal subgroup H of G, and the result quickly follows. Now assume
(m, q) = (6, 2) or (7, 2). Consider the irreducible elements of type x1 defined in Table 10,
and note that the bound a1 > β1 implies that a1 > 3. By the proof of [6, Proposition 5.8],
we may assume that H is of type O−

2m(q) or Sp2m/k(q
k), where k is a prime divisor of m

(these are the only maximal subgroups of S that contain such elements). In both cases
we observe that semisimple elements of type x2, and regular unipotent elements (that is,
unipotent elements with Jordan form [J2m]) are derangements. The result now follows
since the bound a2 > β2 in Table 10 implies that a2 > 2. �

Proposition 3.14. The conclusion to Theorem 2 holds if S = PSp2m(q) and m > 5.

Proof. Let H be a maximal subgroup of S. It suffices to show that there are at least three
A-classes of elements x ∈ S such that xA ∩ H is empty (and that the number of such
A-classes tends to infinity as |S| tends to infinity). We will assume that S is not one of the
groups in the statement of Proposition 3.13. We continue to adopt the notation introduced
in Table 10. It is important to note that the bounds ai > βi in Table 10, together with
the conditions on m and q, imply that ai > 3 in all cases (with the exception of a3 if
(m, q) = (5, 3)), and it is clear that ai tends to infinity as |S| tends to infinity.

First assumemq is odd. Consider elements of type x2, as described in Table 10. Accord-
ing to [6, Proposition 5.10], the only maximal subgroup of S containing such an element
is the stabiliser of a nondegenerate 2-space, denoted by N2. Since a2 > 3 (and a2 tends to
infinity as |S| tends to infinity), we have reduced to the case H = N2. In this situation,
irreducible elements of type x1 are derangements and the result follows.

Next suppose q is odd and m > 6 is even. Here we use elements of type x3 to reduce to
the case whereH is either a subspace subgroup of typeN4 (the stabiliser of a nondegenerate
4-space), or a field extension subgroup of type Spm(q2) (see [6, Proposition 5.10]). These
subgroups can be handled as before, using elements of type x1 and x2, respectively (note
that the order of the field extension subgroup is indivisible by |x2|).
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Finally, let us assume q is even. By considering elements of type x1, and by inspecting
the proof of [6, Proposition 5.8], we reduce to the case where H is of type O−

2m(q) or
Sp2m/k(q

k) for a prime divisor k of m. Now x2 fixes an orthogonal decomposition of the

form 2 ⊥ (2m − 2), which implies that x2 ∈ O−
2 (q) × O−

2m−2(q) < O+
2m(q) and thus x2

is a derangement if H is of type O−
2m(q). Since |x2| does not divide the order of a field

extension subgroup, we also deduce that these elements are derangements if H is of type
Sp2m/k(q

k). The result follows. �

Proposition 3.15. The conclusion to Theorem 2 holds if S is a symplectic group.

Proof. We may assume that 2 6 m 6 4. We may also assume that S is not one of the
cases handled in Proposition 3.13. We continue to adopt the notation introduced in Table
10. In particular, we set d = (2, q − 1) and e = 2δd logp q, where δ = 1 if m = p = 2 and
δ = 0 otherwise. As usual, let H be a maximal subgroup of S.

First assume q is odd and note that the bound a1 > β1 in Table 10 implies that a1 > 3.
If m = 2 or 4 then by considering elements of type x1 we reduce to the case where H is
of type Spm(q2) (see [6, Proposition 5.12]). In this situation, we define an element x4 ∈ S
that fixes an orthogonal decomposition 2 ⊥ (2m− 2) of V by centralising the 2-space and
acting irreducibly on the (2m− 2)-space. Then x4 is a derangement and we note that

a4 >

⌈

φ(qm−1 + 1)

(2m− 2)e

⌉

(2)

where a4 denotes the number of A-classes of such elements. In particular, it follows that
a4 > 3 if m = 2 and q > 29, or if m = 4 and q > 5. (We also note that a4 tends to infinity
as |S| tends to infinity.) Of course, unipotent elements with Jordan form [J2, J

2m−2
1 ] or

[J4, J
2m−4
1 ] are also derangements (where Ji denotes a standard unipotent Jordan block

of size i), so it is easy to see that there are always at least three distinct A-classes of
derangements.

Similarly, if q is odd and m = 3 then we reduce to subgroups of type GU3(q) and Sp2(q
3)

via elements of type x1 (see [2, Main Theorem], for example). In these cases, elements of
type x2 are derangements, and the result follows since a2 > 3 (if q > 5 then this follows
from the bound a2 > β2, and for q = 5 it can be checked directly).

Finally, suppose q is even. In the usual manner, by considering elements of type x1
and applying [6, Proposition 5.8], we reduce to the case where H is of type O−

2m(q) or
Sp2m/k(q

k), with k a prime divisor of m. In the first case, elements of type x2 are de-

rangements and the result follows. Similarly, if H is of type Sp2m/k(q
k) then elements of

type x4 (as defined above) are derangements, and the result follows via the lower bound
in (2) (and the fact that unipotent elements with Jordan form [J2, J

2m−2
1 ] or [J4, J

2m−4
1 ]

are also derangements). �

3.7. Orthogonal groups. Finally, let us assume S = PΩǫ
n(q), where n > 7. Set A =

Aut(S) and define d = (2, q − 1) if n is even, and d = 1 if n is odd. As in the previous
section, we will denote an orthogonal decomposition V = U ⊥ W with dimU = m by
writingm ⊥ (n−m). If m is even, in order to distinguish between nondegenerate m-spaces
of plus and minus types, we will write m+ and m−, respectively. This is consistent with
the notation used in [6, 28].

Proposition 3.16. The conclusion to Theorem 2 holds if S is one of the following:

PΩǫ
8(q), q 6 4; PΩǫ

10(q), q 6 3; PΩǫ
12(q), q 6 3; Ω+

14(2); Ω
+
16(2); Ω

+
18(2).

Proof. Set S = PΩǫ
2m(q). If m 6 4 or (m, q) ∈ {(5, 2), (6, 2)} then the result can be

checked using Magma.
Next suppose S = Ω+

14(2). Let x ∈ S be an element of order 195 that fixes an orthogonal
decomposition 2− ⊥ 12− of the natural S-module. Using Magma, we see that there are
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Decomposition βi

x1 2− ⊥ (2m− 2)− φ(q + 1)φ(qm−1 + 1)/2(2m − 2)e

x2, m odd (m− 1)− ⊥ (m+ 1)− φ(q(m−1)/2 + 1)φ(q(m+1)/2 + 1)/(m2 − 1)e

x3, m even (m− 2)− ⊥ (m+ 2)− φ(q(m−2)/2 + 1)φ(q(m+2)/2 + 1)/(m2 − 4)e

e = 2d logp q

Table 11.

at least three A-classes of such elements, and by the main theorem of [29] we deduce
that the only maximal subgroup of S containing x is the stabiliser of a nondegenerate
2-space of minus-type, which we denote by N−

2 . Therefore, we have reduced to the case
H = N−

2 . It is easy to identify three classes of derangements in this case. For instance,
any unipotent element with Jordan form [J13, J1], [J11, J3] or [J9, J5] is a derangement.
The cases S = Ω+

16(2) and Ω+
18(2) are entirely similar.

It remains to deal with the cases S = PΩǫ
10(3) and PΩǫ

12(3). First assume S = PΩ+
10(3).

Let x ∈ S be an element of order 82 that fixes an orthogonal decomposition 2− ⊥ 8−.
There are at least three A-classes of such elements, and the main theorem of [29] implies
that the only maximal subgroups of S that contain such elements are of type N−

2 or O5(9).
The result now follows because it is easy to see that there are at least three A-classes of
derangements ifH is of type N−

2 or O5(9); for example, any unipotent element with Jordan
form [J9, J1], [J7, J3] or [J5, J

2
2 , J1] is a derangement. The case S = PΩ+

12(3) is very similar
(working with elements of order 122 that fix a decomposition 2− ⊥ 10−).

The cases S = PΩ−
10(3) or PΩ−

12(3) are also similar. If S = PΩ−
10(3) then the only

maximal subgroups of S that contain elements of order 61 are of type GU5(3), and the
result follows as before. Similarly, if S = PΩ−

12(3) then we work with elements of order
365, which only belong to maximal subgroups of type O−

6 (3
2) or O−

4 (3
3). Again, the result

quickly follows. �

Proposition 3.17. The conclusion to Theorem 2 holds if S = PΩ+
2m(q) and m > 5.

Proof. We may assume that S is not one of the groups in the statement of Proposition
3.16. We define the regular semisimple elements xi ∈ S as in Table 11 (we use the same
notation as in [6, 28]), where βi is a lower bound on ai, which is the number of distinct
A-classes of elements in S with the same shape and order as xi. Let H be a maximal
subgroup of S.

First assume m is odd. Consider elements of type x2. By [6, Proposition 5.13], the only
maximal subgroups of S containing x2 are of type N

−
m−1. The lower bound a2 > β2 implies

that a2 > 3 (and that a2 tends to infinity as |S| tends to infinity). Now, if H = N−
m−1

then elements of type x1 are derangements, and we observe that the lower bound a1 > β1
is sufficient.

Now assume m is even. By considering elements of type x3, and by applying [6, Propo-
sition 5.14], we reduce to the case where H is of type N−

m−2 or O+
m(q2). Here elements of

type x1 are derangements, and the result follows via the bound a1 > β1. �

Proposition 3.18. The conclusion to Theorem 2 holds if S = PΩ+
8 (q).

Proof. In view of Proposition 3.16, we may assume that q > 5. Let x1 ∈ S be a regular
semisimple element that fixes an orthogonal decomposition 2− ⊥ 6−. Let a1 denote the
number of distinct A-classes of such elements. Then

a1 >

⌈

φ(q + 1)φ(q3 + 1)

12 · 6d logp q

⌉

and we deduce that a1 > 3 if q > 7 (and that a1 tends to infinity as |S| tends to infinity).
If q = 5 then a direct calculation shows that there are at least three A-classes of such
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elements (in particular, none of the relevant PGO+
8 (5)-classes are fused by a triality graph

automorphism of S). By [28, p.767], the only maximal subgroups of S containing such
elements are of type N−

2 or GU4(q), so we may assume that H is one of these subgroups.
Now let x2 ∈ S be a regular semisimple element that fixes an orthogonal decomposition
2+ ⊥ 6+ and lifts to an element in Ω+

8 (q) of order q
3 − 1. Note that x2 is a derangement,

and let a2 be the number of A-classes of such elements. Then

a2 >

⌈

φ(q − 1)φ(q3 − 1)

12 · 6d logp q

⌉

and the result follows if q > 7. Finally, if q = 5 or 7 then one can check directly that there
are at least three A-classes of such elements. �

Proposition 3.19. The conclusion to Theorem 2 holds if S = PΩ−
2m(q) and m > 4.

Proof. We may assume that S is not one of the groups in the statement of Proposition
3.16. Let x1 ∈ S be an irreducible element that lifts to an element of order (qm + 1)/d in
Ω−
2m(q). Let a1 be the number of A-classes of such elements. Then

a1 >

⌈

φ(qm + 1)

2m · 2d logp q

⌉

(3)

and thus a1 > 3 (and a1 tends to infinity as |S| tends to infinity). By [2, Main Theorem],
if H is a maximal subgroup of S that contains such an element then H is a field extension
subgroup of type O−

2m/k(q
k) or GUm(q) (with m odd), where k is a prime divisor of m. In

both of these cases, any element x2 ∈ S that fixes a decomposition 2+ ⊥ (2m− 2)− of the
natural S-module, centralising the 2-space and acting irreducibly on the (2m − 2)-space,
is a derangement. Now, if a2 denotes the number of A-classes of such elements then

a2 >

⌈

φ(qm−1 + 1)

(2m− 2) · 2d logp q

⌉

(4)

and the result follows. �

Proposition 3.20. The conclusion to Theorem 2 holds if S = Ω2m+1(q) and m > 3.

Proof. If S = Ω7(3),Ω7(5) or Ω9(3) then the result can be checked directly, using Magma

[3], so we will assume that we are not in one of these cases.
Let x1 ∈ S be a regular semisimple element of order (qm+1)/2 that fixes a decomposition

(2m)− ⊥ 1 of the natural S-module, and let a1 be the number of distinct A-classes of such
elements. Then (3) holds (setting d = 1), so a1 > 3 (and a1 tends to infinity as |S|
tends to infinity). By [6, Proposition 5.20], the only maximal subgroup of S containing
such an element is the stabiliser of a nondegenerate 2m-space of minus-type, denoted
by H = N−

2m. In this situation, let x2 ∈ S be an element of order q(qm−1 + 1)/2 that
fixes a decomposition 3 ⊥ (2m − 2)−, where x2 acts indecomposably on the 3-space and
irreducibly on the (2m−2)−-space. If a2 denotes the number of A-classes of such elements
then (4) holds (with d = 1), so a2 > 2 and the result follows since every regular unipotent
element is also a derangement. �

This completes the proof of Theorem 2.

4. Two classes of derangements

In this section we investigate the finite primitive permutation groups G with the prop-
erty κ(G) = 2, with the aim of proving Theorem 4. We begin with a preliminary lemma.
As before, if X is a group then X∗ = X \ {1} is the set of nontrivial elements in X.
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Lemma 4.1. Let G 6 Sym(Ω) be a finite transitive permutation group with point stabiliser

H 6= 1. Let N be a regular normal subgroup of G. Then G is a Frobenius group with kernel

N if and only if ∆(G) ⊆ N .

Proof. Since N is regular, we have G = HN and H ∩ N = 1. By definition, if G is a
Frobenius group with kernel N then ∆(G) = N∗.

Now assume ∆(G) ⊆ N . First observe that if x ∈ N∗ then xG ∩H ⊆ N∗ ∩H = ∅, so
x ∈ ∆(G) and thus N∗ ⊆ ∆(G). Therefore ∆(G) = N∗. Let {H1, . . . ,Hk} be the set of
conjugates of H in G. Then k = |G : NG(H)| 6 |G : H| = |N | and

|
k
⋃

i=1

H∗
i | 6

k
∑

i=1

|H∗
i | =

k
∑

i=1

(|H| − 1) = k(|H| − 1).

Now

G = {1} ∪∆(G) ∪





⋃

g∈G

(H∗)g



 = N ∪
(

k
⋃

i=1

H∗
i

)

and thus

|G| = |N |+ |
k
⋃

i=1

H∗
i | 6 |N |+ k(|H| − 1) 6 |N |+ |N |(|H| − 1) = |N | · |H| = |G|.

Since |H| 6= 1, it follows that k = |N | = |G : H| and |⋃k
i=1 H

∗
i | =

∑k
i=1 |H∗

i |. The latter
equality forces Hi ∩ Hj = 1 for every 1 6 i 6= j 6 k. Equivalently, H ∩ Hg = 1 for all
g ∈ G \H and thus G is a Frobenius group with kernel N . �

Recall that if J is a proper subgroup of G, then we set

∆J(G) = G \
⋃

g∈G

Jg.

We record the following easy result.

Lemma 4.2. Let H be a maximal subgroup of a finite group G, M a normal subgroup of

G such that G = HM , and let K be a proper subgroup of M containing H ∩ M . Then

∆K(M) ⊆ ∆H(G).

Proof. Let x ∈ ∆K(M) and assume that x 6∈ ∆H(G). Then x ∈ Hg for some g ∈ G. It

follows that xg
−1 ∈ H and since x ∈ M P G, we also have xg

−1 ∈ M, so xg
−1 ∈ H ∩M and

thus x ∈ (H ∩M)g = Hg ∩M . Since g ∈ G = HM , we can write g = hm with h ∈ H and
m ∈ M . Then x ∈ Hg ∩M = Hm ∩M = (H ∩M)m 6 Km with m ∈ M , contradicting
our assumption that x ∈ ∆K(M). The result follows. �

Proposition 4.3. Let G 6 Sym(Ω) be a finite primitive permutation group of degree n
with point stabiliser H. Assume G is not almost simple. If κ(G) = 2, then one of the

following holds:

(i) (G,n) = (Z3, 3);

(ii) G = HN is a Frobenius affine group, where the kernel N is an elementary abelian

p-group of order n = pk for some odd prime p, and |H| = (n− 1)/2;

(iii) G is a non-Frobenius 2-transitive affine group.

Moreover, any primitive group G as in (i) or (ii) has the property κ(G) = 2.

Proof. Let H = Gα be a point stabiliser. First assume G is one of the groups in (i) or (ii).
Clearly, κ(G) = 2 in case (i). In (ii), H acts semiregularly on Ω \ {α} with exactly two
orbits. In particular, ∆(G) = N∗ = xG ∪ yG and thus κ(G) = 2.
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Now assume κ(G) = 2. We proceed as in the proof of Theorem 2.1. Let N be a minimal
normal subgroup of G, so G = HN . If H = 1 then G is regular and clearly (G,n) = (Z3, 3)
is the only possibility. For the remainder, let us assume H 6= 1.

Suppose that H ∩N 6= 1. By the proof of Theorem 2.1, we may assume that N ∼= Sk,
where S is a nonabelian simple group, k > 2 and G 6 L ≀Sk acting with its product action
on Ω = Γk, where L 6 Sym(Γ) is a primitive almost simple group with socle S. Let u ∈ S
be a derangement on Γ. Then x = (u, 1, . . . , 1) ∈ N and y = (u, u, 1, . . . , 1) ∈ N are non-
conjugate derangements on Ω. If k > 3 then zG = (u, u, u, 1, . . . , 1)G would be another
G-class of derangements, so k = 2 since κ(G) = 2. If S has two L-classes of derangements
with representatives u and v, then (u, 1), (u, u), (v, 1) ∈ N are non-conjugate derange-
ments, which is a contradiction. Therefore S contains a unique L-class of derangements
on Γ.

Write N = S1 × S2, where Si
∼= S, i = 1, 2. Let K be a maximal subgroup of N

such that H ∩ N 6 K. By Lemma 4.2, every derangement of N on N/K is also a
derangement of N on Ω. It is well known that either K is a diagonal subgroup of the
form {(s, φ(s)) | s ∈ S1} for some isomorphism φ : S1 → S2, or K is a standard maximal
subgroup, that is K = S1 ×K2 or K1 × S2, where Ki < Si is maximal (see, for example,
[48, Lemma 1.3]). In the diagonal case, every element of the form (s, 1) with 1 6= s ∈ S1

is a derangement of N on N/K. Clearly, this case cannot happen. Now assume K is a
standard maximal subgroup. Without loss of generality, we may assume that K = K1×S2,
where K1 is maximal in S1. Let s ∈ N be a derangement on N/K of prime power order,
say pe for some prime p and integer e > 1 (such an element exists by the main theorem
of [17]). Since |π(S)| > 3, choose a, b ∈ S2 of distinct prime orders that are both different
from p. Then (s, 1), (s, a) and (s, b) are derangements of N on N/K with distinct orders,
so N has at least three distinct N -classes of derangements on N/K and thus N has at
least three distinct G-classes of derangements on Ω. We have now eliminated the case
H ∩N 6= 1.

Finally, suppose that H ∩ N = 1, so N is regular and we may identify Ω with N .
By arguing as in the proof of Theorem 2.1, we deduce that N is an elementary abelian
p-group for some prime p, say |N | = n = pk. In particular, G is an affine group. If
∆(G) ⊆ N then G is Frobenius by Lemma 4.1, and we deduce that (ii) holds (here H
acts semiregularly on Ω \ {α}, with exactly two orbits). On the other hand, if ∆(G) * N

then N∗ = xG ⊂ ∆(G) for some x ∈ N∗, and thus H acts transitively on N∗, so G is a
2-transitive affine group. �

To complete the proof of Theorem 4, we may assume that G is a non-Frobenius 2-
transitive affine group. Write G = HN , where H = Gα and N is a regular normal
elementary abelian subgroup of order pk (p prime). Assume that κ(G) = 2, so N∗ = xG

and ∆(G) = xG ∪ yG for some x ∈ N∗ and y ∈ G \N . Note that N 6 CG(x) 6 G = HN
and |xG| = |G : CG(x)| = |N∗| = pk − 1, so CG(x) = NCH(x) and

|H| = |G : N | = |G : CG(x)| · |CG(x) : N | = (pk − 1)|CH(x)|. (5)

We need a couple of preliminary results.

Lemma 4.4. Let C = CH(x). Then |C| = pbrc, where r 6= p is a prime and b, c > 0.

Proof. If CH(x) is a p-group, then we are done. Assume that |CH(x)| is divisible by a
prime r 6= p. Then CH(x) contains an element of u order r. Let z := xu ∈ G. Then
|z| = pr and z is a derangement. Indeed, if z ∈ Hg for some g ∈ G, then zr = xr ∈ Hg,
which implies that 〈xr〉 = 〈x〉 6 Hg as (r, p) = 1, so x ∈ Hg and this is a contradiction
since x ∈ ∆(G). Since κ(G) = 2 and |z| 6= |x|, we must have zG = yG. Therefore r is
uniquely determined and the result follows. �
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In the next lemma, note that part (i) holds for any non-Frobenius 2-transitive group
G = HN such that |N | = pk and p divides |H|.
Lemma 4.5. Let Hp be a Sylow p-subgroup of H, and assume that Hp 6= 1.

(i) [N,Hp] is a proper subgroup of N , and tz ∈ ∆(G) for all t ∈ Hp and all z ∈
N \ [N,Hp].

(ii) Hp has exponent p and H∗
p ⊆ tH for some t ∈ H∗

p . Furthermore, |CH(x)| = pb and

thus |H| = (pk − 1)pb, for some b > 1.

Proof. Let P = NHp and observe that P is a Sylow p-subgroup of G.
First consider (i). Let c be the nilpotency class of P , so if we define γ0(P ) = P

and γi+1(P ) = [γi(P ), P ] for all i > 0, then γc(P ) = 1 and γc−1(P ) 6= 1. Seeking a
contradiction, suppose that N = [N,Hp]. Then N ⊆ [P,P ] = γ1(P ), so

N = [N,Hp] ⊆ [γ1(P ), P ] = γ2(P )

and so on. In this way, we deduce that N ⊆ γc(P ) = 1, which is a contradiction. Hence
[N,Hp] 6= N and we fix an element z ∈ N \ [N,Hp].

We claim that tz ∈ ∆(G) for all t ∈ Hp. Assume otherwise. Then tz ∈ Hg for some
g ∈ G. Since G = HN , we can write g = hn with h ∈ H,n ∈ N . Then tz ∈ Hn and thus
ntzn−1 ∈ H. Since z, n ∈ N we have zn = nz and

ntzn−1 = t(t−1ntn−1)z = t[t, n−1]z ∈ H.

Hence [t, n−1]z ∈ H ∩N = 1, which implies that z = [n−1, t] ∈ [N,Hp], contradicting our
choice of z. This completes the proof of part (i).

Now let us turn to (ii). By (i), tz ∈ ∆(G) for all t ∈ Hp. If t ∈ H∗
p then tz 6∈ N∗ = xG,

so tz ∈ yG and thus (H∗
p)z ⊆ yG.

Let s, t ∈ H∗
p . Then sz, tz ∈ yG, so (tz)g = sz for some g = hn ∈ HN = G with

h ∈ H,n ∈ N . It follows that n−1h−1tzhn = sz so

s−1th = nszn−1(zh)−1 ∈ H ∩N = 1,

and thus th = s. Therefore H∗
p ⊆ tH , so all elements in H∗

p have the same order, which
must be p.

Now tz ∈ yG and tz ∈ P = NHp, so y is a p-element and thus every element in ∆(G)
has p-power order. Let C = CH(x). Suppose |C| is divisible by a prime r 6= p and let
u ∈ C be an element of order r. Then ux ∈ ∆(G) has order rp, which is a contradiction.
Therefore |C| = pb for some b > 1, and the result follows (see (5)). �

Let G = HN 6 Sym(Ω) be a primitive affine permutation group, where |N | = pk for a
prime p. We may identify Ω with N ∼= (Fp)

k and take H to be the stabiliser of the zero
vector in N , so H 6 GLk(p) is irreducible. The 2-transitive affine permutation groups
were classified by Hering [31, 32] (also see [9, Section 7.3] and [41, Appendix 1]). Four
infinite families arise, together with finitely many sporadic cases of degree at most 592.
By inspecting these cases, we can severely restrict the possibilities for a non-Frobenius
2-transitive affine group G with κ(G) = 2.

For the remainder of this section, we will write P(n, i) for the i-th primitive permutation
group of degree n in the library of primitive groups stored in Magma [3], which can be
accessed via the command PrimitiveGroup(n, i).

Proposition 4.6. Let G = HN be a non-Frobenius 2-transitive affine group of degree pk,
where H 6 GLk(p) as above. If κ(G) = 2 then one of the following holds:

(i) H 6 ΓL1(p
k);

(ii) SL2(q) P H, where q2 = pk;
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n H Conditions

(i) pk H 6 ΓL1(p
k)

(ii) qa SLa(q) P H 6 ΓLa(q) a > 2

(iii) qa Spa(q) P H a > 4

(iv) q6 G2(q)
′ P H p = 2

(v) 52, 72, 112, 232 SL2(3) P H

(vi) 34 21+4 P H

(vii) 92, 112, 192, 292, 592 SL2(5) P H

(viii) 24 A6

(ix) 24 A7

(x) 36 SL2(13)

Table 12. 2-transitive affine groups

(iii) G = P(52, 17) = 52:(21+2.6), P(112, 42) = 112:(21+2.[30]), P(34, 70) = 34:((2 ×
Q8):2):5 or P(292, 104) = 292:(7× 2.SL2(5)).

Moreover, each group G in (iii) has the property κ(G) = 2.

Proof. By Hering’s Theorem, the possibilities for H are given in Table 12, where n = pk

denotes the degree of G. In order to prove the proposition, we need to eliminate cases (iii)
– (x), and also case (ii) with a > 3.

As before, write N∗ = xG and ∆(G) = xG ∪ yG, where y ∈ G \N . Set C = CH(x) and
recall that |H| = (pk − 1)|C|. By Lemma 4.4, it follows that

|H|p′

pk−1
is a prime power. (6)

We start by considering the cases (ii), (iii) and (iv). Write q = pm, so ma = k and qa = pk

(where a = 6 in case (iv)).
Suppose (ii) holds. If a > 4 then (q2 − 1)(q3 − 1) divides |H|p′/(pk − 1), but this is

incompatible with (6). Now assume a = 3. Here (6) implies that q2 − 1 = rt for some
prime r 6= p and integer t > 0, so p2m = 1 + rt and we deduce that m = 1 and p ∈ {2, 3}.
If p = 2 then ΓL3(2) ∼= SL3(2), so H = SL3(2), G = 23:SL3(2) and using Magma we
calculate that κ(G) = 5. Similarly, if p = 3 then ΓL3(3) = GL3(3) and thus G = 33:SL3(3)
or 33:GL3(3). Here we calculate that κ(G) = 10 or 11, respectively.

Now assume (iii) holds, so a > 4 is even. If a > 6 then (q2 − 1)(q4 − 1) divides
|H|p′/(pk − 1), which contradicts (6), so we may assume that a = 4. Here q2 − 1 = rt,
where r is a prime and t > 0, so as in the previous case we deduce that m = 1 and
p ∈ {2, 3}. In particular, Sp4(p) P H 6 GL4(p) with p = 2, 3. If p = 2 then H = Sp4(2)
since Sp4(2) is a maximal subgroup of GL4(2), so G = 24:Sp4(2) and we calculate that
κ(G) = 10. If p = 3 then H ∼= Sp4(3) or NGL4(3)(Sp4(3)) = Sp4(3).2, and we find that
κ(G) = 24 or 18, respectively.

Next consider (iv). Here p = 2, a = 6 and q2 − 1 divides |H|p′/(pk − 1), so q2 − 1 = rt

for some prime r 6= p and integer t > 0. The only possibility is m = 1, so G = 26:G2(2)
′

or 26:G2(2), and we calculate that κ(G) = 10 or 14, respectively.
To complete the proof of the proposition, we need to deal with the remaining cases

labelled (v) to (x) in Table 12. In each of these cases we use the library of primitive
groups in Magma to determine the possiblities for G, and in each case we compute κ(G).

Consider (v). Here k = 2 and SL2(3) P H 6 GL2(p), where p ∈ {5, 7, 11, 23}. We
use the library of primitive groups of degree p2 to determine the possibilities for G with
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κ(G) = 2; we find that either p = 5 and G = P(52, 17) = 52:(21+2.6), or p = 11 and
G = P(112, 42) = 112:(21+2.[30]). Similarly, in (vi) we find that the only example is
G = P(34, 70) = 34:((2 × Q8):2):5, and in (vii) the only example is G = P(292, 104) =
292:(7 × 2.SL2(5)). Finally, in cases (viii), (ix) and (x) we calculate that κ(G) = 5, 6 and
3, respectively. �

We now focus on the possibilities that can arise in cases (i) and (ii) of Proposition 4.6.
We begin with a preliminary lemma.

Lemma 4.7. Let G be the primitive affine group q2:SL2(q), where q = 2m and m > 2.
Then κ(G) > 3.

Proof. Write G = HN , where H = SL2(q) and N is elementary abelian of order q2 = 22m.
We can embed G into SL3(q) as follows:

G =











1 0 0
α a b
β c d



 | α, β, a, b, c, d ∈ Fq, ad− bc = 1







N =











1 0 0
α 1 0
β 0 1



 | α, β ∈ Fq







∼= q2

H =











1 0 0
0 a b
0 c d



 | a, b, c, d ∈ Fq, ad− bc = 1







∼= SL2(q).

Note that

H2 =











1 0 0
0 1 0
0 c 1



 | c ∈ Fq







is a Sylow 2-subgroup of H. Direct computation shows that

[N,H2] =











1 0 0
0 1 0
β 0 1



 | β ∈ Fq







.

By Lemma 4.5(i), we deduce that

z1 =





1 0 0
0 1 0
0 1 1









1 0 0
1 1 0
1 0 1



 =





1 0 0
1 1 0
0 1 1





and

z2 =





1 0 0
0 1 0
0 1 1









1 0 0
γ 1 0
γ 0 1



 =





1 0 0
γ 1 0
0 1 1





are derangements, where γ ∈ Fq is a generator for F∗
q. Since z1, z2 6∈ N , it suffices to show

that z1 and z2 are not G-conjugate.
Seeking a contradiction, assume that zg1 = z2 for some g ∈ G, say

g =





1 0 0
α a b
β c d





where a, b, c, d, α, β ∈ Fq and ad − bc = 1. Now it follows from the equation zg1 = z2 that
z1g = gz2 and hence





1 0 0
α+ 1 a b
α+ β a+ c b+ d



 =





1 0 0
α+ γa a+ b b
β + γc c+ d d
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which implies that






















α+ 1 = α+ γa
a = a+ b

α+ β = β + γc
a+ c = c+ d
b+ d = d

and thus














γa = 1
b = 0
d = a
α = γc.

Since ad− bc = 1 we deduce that

1 = ad = a2 = γ−2

and thus γ2 = 1. This implies that γ = 1, which is a contradiction since m > 2. �

Proposition 4.8. Let G = HN be a non-Frobenius 2-transitive affine group of degree pk,
where SL2(q) P H and q2 = pk. Then κ(G) = 2 if and only if G ∼= S4.

Proof. Let us assume that κ(G) = 2 and write ∆(G) = xG∪yG as before, where N∗ = xG.
Set C = CH(x) and let Hp be a Sylow p-subgroup of H. Recall that |H| = (pk − 1)|C|
(see (5)). Write k = 2m, where m > 1 is an integer.

Here |SL2(q)| = pm(pk − 1) divides |H| and thus pm divides |C|, so Lemma 4.5(ii)
implies that |C| = pb where b > m. Therefore, |H : SL2(p

m)| = pb−m. Since |ΓL2(p
m) :

SL2(p
m)| = m(pm − 1), it follows that H 6 ΓSL2(p

m) and thus H/SL2(p
m) is cyclic.

More precisely, either H = SL2(p
m) or H = SL2(p

m)〈τ〉 where τ is a p-element and

τp
b−m ∈ SL2(p

m). By Lemma 4.5(ii), Hp has exponent p and thus |τ | = p.
First assume that H = SL2(p

m)〈τ〉 with |τ | = p. Let 1 6= σ ∈ Hp∩SL2(p
m). By Lemma

4.5(ii), τ = σh ∈ SL2(p
m) for some h ∈ H, which is a contradiction. Therefore, this case

does not occur.
Finally, suppose that H = SL2(p

m). Here Hp is an elementary abelian p-group of order
pm. By Lemma 4.5(ii), all nontrivial elements in Hp are H-conjugate and we quickly
deduce that p = 2. If m = 1 then G ∼= 22:S3

∼= S4 and κ(G) = 2, and Lemma 4.7 implies
that κ(G) > 3 if m > 2. �

The next proposition completes the proof of Theorem 4.

Proposition 4.9. Let G = HN be a non-Frobenius 2-transitive affine group of degree pk,
where H 6 ΓL1(p

k). Then κ(G) = 2 only if k is even and |H| = 2(pk − 1).

Proof. Suppose κ(G) = 2 and write ∆(G) = xG ∪ yG as before, where N∗ = xG. Set
C = CH(x) and let Hp be a Sylow p-subgroup of H. Note that H is soluble and recall

that |H| = (pk − 1)|C|.
Set H0 = H ∩ GL1(p

k) and note that GL1(p
k) is cyclic of order pk − 1. Then H/H0 is

also cyclic and |H/H0| divides k. Moreover, NH0 is a Frobenius group, so H0 ∩ C = 1
and C ∼= H0C/H0 is cyclic. Write |H0| = (pk − 1)/d for some integer d > 1. Since |H|
is divisible by pk − 1, it follows that d divides |H : H0|. Therefore H/H0 has a normal
subgroup of order d, and the inverse image of this subgroup in H, say L, is a normal
subgroup of H containing H0, and |L| = pk − 1. There are two cases to consider.

First assume that |C| is divisible by p. Then Hp 6= 1, so Lemma 4.5(ii) implies that Hp

has exponent p and C is a p-group, say |C| = pb. Since C is cyclic we have pb = p and
thus |H| = p(pk−1), which implies that H = LC, L∩C = 1 and C is a Sylow p-subgroup
of H. Write C = 〈t〉 with |t| = p. By Lemma 4.5(ii), th = t−1 for some h ∈ H, say h = tsl
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where l ∈ L and s ∈ Z. Then th = tl = t−1 which implies that t−2 = [t, l] ∈ L ∩ 〈t〉 = 1.
Therefore |t| = 2 = p and |H| = 2(2k − 1). In particular, k is even.

Now assume that |C| is indivisible by p. Then |C| = rc for some prime r 6= p and c > 1
(see Lemma 4.4). Write C = 〈t〉. As in the proof of Lemma 4.4, sx ∈ ∆(G) \ xG = yG

for all 1 6= s ∈ C. It follows that |C| = r, so |H| = r(pk − 1) and our aim is to show that
r = 2. Since {tx, t−1x} ⊆ yG, we deduce that th = t−1 for some h ∈ H. There are now
two cases to consider.

If t 6∈ L, then H = LC with L ∩ C = 1, and by arguing as above we deduce that
|t| = |C| = r = 2, k is even and G = (NL).2, where NL is a 2-transitive Frobenius group.

Now assume that t ∈ L for every subgroup L of index r in H with H0 6 L. Since t
fixes x ∈ N∗ it follows that t 6∈ H0, so tH0 is a nontrivial real element of order r in the
cyclic group H/H0, which implies that tH0 is an involution and thus r = 2. Since t ∈ L
and |L| = pk − 1 is even, it follows that p is odd. Moreover, since H0 P H0C P L P H
with |H : L| = 2, |H0C : H0| = 2 and |H : H0| dividing k, we deduce that k is divisible by
4. �

In [21, Section 15], Foulser gives detailed information on the precise structure of the
2-transitive affine groups G = HN with H 6 ΓL1(p

k). To close this section, we show that
κ(G) = 2 in the special case H = GL1(p

k).2 (with k even). We thank Bob Guralnick for
helpful comments on the proof.

Proposition 4.10. Let G = HN be a non-Frobenius 2-transitive affine group of degree

pk, where k is even and H = GL1(p
k).2 6 ΓL1(p

k). Then κ(G) = 2.

Proof. Write q2 = pk and set L = GL1(q
2) and H = L〈φ〉, where φ is a field automorphism

of order 2. By Theorem 1, κ(G) > 2. Moreover, since NL = AGL1(q
2) is sharply 2-

transitive, it suffices to show that there is a unique G-class of derangements in the coset
NLφ. Let y ∈ NLφ be a derangement. To prove the proposition, we will show that yG

meets Nφ, and then we prove that any two derangements in Nφ are G-conjugate.
Consider y2 ∈ NL. If y2 ∈ NL \ N then y2 has a unique fixed point (since NL is

Frobenius), which contradicts the fact that y is a derangement. Therefore, y2 ∈ N . Now
y ∈ Nℓφ for some ℓ ∈ L, so (ℓφ)2 ∈ N ∩ L = 1 and thus ℓφ is an involution. We claim
that ℓφ is L-conjugate to φ. To see this, note that there are precisely q + 1 involutions in
the coset Lφ (involutions correspond to elements in L that are inverted under the action
of φ), and we calculate that |φL| = q + 1. This justifies the claim, and we deduce that
yg ∈ Nφ for some g ∈ G. Set z = yg.

It is easy to check that there are precisely q−1 involutions in the coset Nφ, each having
q fixed points. Therefore, z is one of q(q − 1) elements in Nφ of order at least 3, and to
complete the proof it suffices to show that any two of these elements are G-conjugate. Let
C = CNL(φ) and note that zNC ⊂ Nφ, so it suffices to show that |zNC | = q(q − 1). Now
|C| = |CN (φ)||CL(φ)| = q(q− 1) and |NC| = |N ||C|/|N ∩C| = q3(q− 1)/q = q2(q− 1), so
we need |CNC(z)| = q. Since z2 ∈ N∗ andNL is a Frobenius group, we have CNL(z

2) 6 N ,
so CNL(z

2) = CN (z2) and thus CNL(z) = CN (z) = CNC(z). Since z acts on N as a field
automorphism of order 2, we deduce that |CN (z)| = q and the result follows. �

5. Zeros of characters

Let G be a finite group, let H be a proper subgroup of G and let HG =
⋂

g∈GHg denote
the core of H in G. Set

∆H(G) = G \
⋃

g∈G

Hg

and let κH(G) be the number of conjugacy classes in ∆H(G). Note that ifHG = 1 then G is
a permutation group on G/H, ∆H(G) is the set of derangements in G, and κH(G) = κ(G)
as before. The aim of this section is to prove Theorem 6.



24 TIMOTHY C. BURNESS AND HUNG P. TONG-VIET†

Following [20], a triple (G,H,L) with L P H 6 G is called a W -triple if H ∩Hg 6 L
for every g ∈ G \H. By a theorem of Wielandt, if (G,H,L) is a W -triple then

M = G \
⋃

g∈G

(H \ L)g

is a normal subgroup of G and we have G = HM and H ∩ M = L (see [47, Exercise 1,
p.347] for a proof using character theory). The normal subgroup M is called the kernel

of the W -triple (G,H,L). This is a natural generalisation of Frobenius’ theorem.
Let χ be a complex character of G. Recall that x ∈ G is a zero of χ if χ(x) = 0. Let

n(χ) be the number of G-classes on which χ vanishes. Note that the conditions κH(G) = 1
and n(1GH) = 1 are equivalent, where 1GH is the permutation character of G.

In the next lemma, we consider the structure of finite groups G that contain a maximal
subgroup H such that κH(G) = 1.

Lemma 5.1. Let H be a maximal subgroup of a finite group G and assume that ∆H(G) =
xG for some x ∈ G. Let N = HG and M = 〈xG〉.

(i) If H P G, then G is a Frobenius group with an abelian odd-order kernel H = G′

of index two;

(ii) If H 6P G, then N P M P G′ and either M = G = G′, or M 6= G and (G,H,H ∩
M) is a W -triple with kernel M .

Proof. First assume that H P G. Then G/H ∼= Zp for some prime p as H is normal and

maximal in G. Since ∆H(G) = G \H = xG, G/H has exactly two conjugacy classes and
thus |G : H| = p = 2. Hence, G = H ∪Hx and Hx = G \H = xG, where H ∩Hx = ∅.
Thus

|xG| = |G : CG(x)| = |H| = 1

2
|G|.

Therefore, |CG(x)| = 2 and so CG(x) = 〈x〉 is cyclic of order 2. Clearly, G′ 6 H. Now,
if h ∈ H then hx ∈ Hx = xG, so hx = xg for some g ∈ G and thus h = xgx−1 ∈ G′.
Therefore H 6 G′ and thus H = G′. As NG(〈x〉) = CG(x) = 〈x〉, we deduce that G
is a Frobenius group with Frobenius complement 〈x〉 of order 2 and a Frobenius kernel
G′ of odd order. Moreover, since each element h ∈ H = G′ can be written in the form
h = xgx−1 for some g ∈ G, we have

hx = x−1xgx−1x = x−1xg = x(xg)−1 = h−1.

Therefore x inverts every element of G′, so G′ is abelian.
Now assume H is not normal in G. Then G′ 66 H and thus G = HG′ and H ∩G′ < G′,

so xG ∩G′ is nonempty. Let y ∈ xG ∩G′. Clearly, ∆H(G) = yG = xG, hence M = 〈xG〉 =
〈yG〉 P G′ as y ∈ G′ P G. Next, we claim that N 6 M . Let n ∈ N . If nx ∈ ⋃g∈GHg then

nx ∈ Hz for some z ∈ G, but n ∈ N = N z 6 Hz and thus x ∈ n−1(Hz) = Hz, which is a
contradiction. Therefore, nx ∈ ∆H(G) = xG, which implies that nx ∈ M and so n ∈ M
as x ∈ M . We conclude that N P M P G′, as claimed.

If M = G, then M = G = G′ and we are done. Now assume that M 6= G. Let
k = |G : NG(H)| = |G : H| and let {Hg1 , . . . ,Hgk} be the set of distinct conjugates of H
in G. Since x ∈ M \H, we deduce that G = HM and thus k = |G : H| = |M : L|, where
L = H ∩M P H. Observe that

G \M =

(

k
⋃

i=1

Hgi

)

\
k
⋃

i=1

(Hgi ∩M) =

(

k
⋃

i=1

Hgi

)

−
k
⋃

i=1

(H ∩M)gi =
k
⋃

i=1

(H \ L)gi .

It follows that

|G| − |M | = |G \M | = |
k
⋃

i=1

(H \ L)gi | 6 k|H \ L| = k(|H| − |L|).
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Since |G| = k|H| and |M | = k|L|, we deduce that |G| − |M | = k(|H| − |L|) and thus

|
k
⋃

i=1

(H \ L)gi | =
k
∑

i=1

|(H \ L)gi |.

Therefore, (H \L)∩ (H \L)g = ∅ for all g ∈ G \H, and thus (G,H,L) is a W -triple with
kernel M . �

Recall that if G 6 Sym(Ω) is a transitive permutation group of degree n > 2 with point
stabiliser H then ∆(G) > |H|, with equality if and only if G is sharply 2-transitive (see
[10]). The next lemma gives a similar lower bound on |∆H(G)| for any finite group G and
proper subgroup H.

Lemma 5.2. Let G be a finite group, let H be a proper subgroup of G, and set N = HG.

Then |∆H(G)| = |∆H/N (G/N)| · |N | > |H|.
Proof. Let Ω be the set of right cosets of H/N in G/N and note that G/N is a transitive
permutation group on Ω with point stabiliser H/N . Write

∆H/N (G/N) = {Na1, Na2, . . . , Nak}
and note that k > |H : N | (see [10]), so to complete the proof it suffices to show that

∆H(G) =
⋃k

i=1Nai.
Let n ∈ N and i ∈ {1, 2, . . . , k}. If nai ∈ Hg for some g ∈ G then since n ∈ N P G

and N 6 H, we have Nai = Nnai ∈ (H/N)Ng, which is a contradiction. Conversely,
if a ∈ ∆H(G), then Na ∈ ∆H/N (G/N) so Na = Naj for some j ∈ {1, 2, . . . , k}. We

conclude that ∆H(G) =
⋃k

i=1Nai and the result follows. �

Lemma 5.3. Let H be a maximal subgroup of a finite group G and assume that ∆H(G) =
xG for some x ∈ G. Then x is a p-element and CG(x) is a p-group for some prime p.

Proof. Let N = HG. As in the proof of the previous lemma, first note that G/N is a
transitive permutation group on the set of right cosets of H/N in G/N . By [17, Theorem
1], Nx ∈ G/N is a derangement of order pb for some prime p and integer b > 1. Write
|x| = pam with (p,m) = 1 and a > 1. Then a > b and there exist u, v ∈ Z with

1 = upa + vm. We have that xp
a
= (xp

b
)p

a−b ∈ N and thus n−1 := xup
a ∈ N . Clearly,

nx = xmv ∈ ∆H(G) = xG, so xmv and x have the same order. It follows that m = 1 and
hence x is a p-element (with |x| = pa).

Finally, seeking a contradiction, suppose that CG(x) is not a p-group. Let r 6= p be
a prime divisor of |CG(x)| and fix y ∈ CG(x) with |y| = r. Then |xy| = par. Since
(pa, r) = 1, we can write 1 = upa + vr for some u, v ∈ Z. Assume that xy 6∈ ∆H(G).
Then xy ∈ Hg for some g ∈ G. We have that xr = (xy)r ∈ Hg, so xvr ∈ Hg and thus
x = xup

a
xvr = xvr ∈ Hg, which is a contradiction. Therefore xy ∈ ∆H(G) = xG, but

this is not possible since |xy| = r|x| 6= |x|. We conclude that CG(x) is a p-group, as
required. �

Remark 5.4. Let G be a finite group and let χ be a nonlinear irreducible character of G
such that χ = φG and n(χ) = 1 for some φ ∈ Irr(H) and proper subgroup H < G. Then
∆H(G) = xG for some x ∈ G with χ(x) = 0, and thus κH(G) = 1. However, the condition
κH(G) = 1 for some subgroup H of G does not imply that G admits an irreducible
character χ = φG for some φ ∈ Irr(H) with the property n(χ) = 1. For example, Theorem
1 implies that κH(G) = 1 if (G,H) = (A5,D10), but no irreducible character of H can
induce irreducibly to G.

We are now in a position to comlete the proof of Theorem 6, on the normal structure
of finite groups G with an induced irreducible character χ such that n(χ) = 1. In order
to state the result, let us recall that if N is a proper nontrivial normal subgroup of G
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then (G,N) is a Camina pair if and only if |CG(g)| = |CG/N (Ng)| for all g ∈ G \ N . In
addition, G is a Camina group if (G,G′) is a Camina pair.

Remark 5.5. As noted in Remark 7(b), Theorem 5.6 below can be viewed as a generali-
sation of [16, Theorem 9] and [44, Theorem 1.1], which give partial structural information
in the case where G is soluble. More precisely, [16, Theorem 9(e)] states that if G is a
finite soluble group with an imprimitive irreducible character χ such that n(χ) = 1, then
G has a normal subgroup L such that G/L is a 2-transitive Frobenius group of prime
power degree. Similarly, assuming G is soluble, parts (2) and (3) in [44, Theorem 1.1]
correspond to parts (i)(a,b) in Theorem 5.6 (note that the conclusion in part (1) of [44,
Theorem 1.1] coincides with part (i) in Lemma 5.1).

Theorem 5.6. Let H be a maximal subgroup of a finite group G and assume that ∆H(G) =
xG for some x ∈ G. Let N = HG, M = 〈xG〉 and assume that H is not normal in G.

Then one of the following holds:

(i) G/N is a 2-transitive Frobenius group with an elementary abelian kernel M/N of

order pn for some prime p, and a complement H/N of order pn − 1. Moreover,

xG = M \N , |CG(x)| = pn, |xG| = |H|, M ′ = N and one of the following holds:

(a) M is a Frobenius group with kernel M ′ and pn = p > 2.

(b) M is a Frobenius group with kernel K P G such that G/K ∼= SL2(3) and

M/K ∼= Q8.

(c) M is a Camina p-group.

(ii) G/N ∼= L2(8):3, H/N ∼= D18:3, N is a nilpotent 7′-group and CG(x) = 〈x〉 ∼= Z7.

(iii) G/N ∼= A5, H/N ∼= D10, N is a 2-group and CG(x) = 〈x〉 ∼= Z3.

In particular, if G = G′ then either case (i)(c) holds with pn = 112 and G/N ∼= 112:SL2(5),
or case (iii) holds.

Proof. As previously noted, G/N is a primitive permutation group on the set Ω of right
cosets of H/N in G/N , with point stabiliser H/N . Clearly, G/N has only one class of
derangements on Ω. By Theorem 1, we deduce that one of the following holds:

• G/N is a Frobenius group with an elementary abelian kernel M/N of order pn for
some prime p, and a complement H/N of order pn − 1;

• G/N ∼= L2(8):3 and H/N ∼= D18:3;

• G/N ∼= A5 and H/N ∼= D10.

Moreover, xr ∈ N with r = p, 7 or 3, respectively.
By Lemma 5.2, |∆H(G)| = |xG| = |G : CG(x)| > |H| and thus |CG(x)| 6 |G : H|.
Suppose that G/N ∼= L2(8):3. Then |CG(x)| 6 |G : H| = 28. By Lemma 5.3, we know

that x is a 7-element and so CG(x) is a 7-group. Since 〈x〉 6 CG(x), we deduce that
CG(x) = 〈x〉 with |x| = 7 and hence x acts fixed point freely on N . Thompson’s Theorem
[47, Theorem 4.22] now implies that N is a nilpotent 7′-group.

Similarly, if G/N ∼= A5 then |G : H| = 6 and CG(x) = 〈x〉 ∼= Z3, so x acts fixed point
freely on N . In this case, N must be a 2-group by the main theorem of [19].

Finally, let us assume that G/N is a Frobenius group with elementary abelian kernel
M/N of order pn. Then G = HM with H ∩M = N and |H/N | = |M/N |− 1 = pn− 1. In
terms of permutation characters, it follows that (1GH)M = 1MN . As N P M , 1MN vanishes on
M \N and thus 1GH also vanishes on this set, which implies that M \N ⊆ xG. Furthermore,

since xG ⊆ M and xG ∩N ⊆ xG ∩H = ∅, we have xG ⊆ M \N and thus xG = M \ N .
Now

|xG| = |G : CG(x)| = |M \N | = |M | − |N | = |N |(|M : N | − 1) = |N | · |H : N | = |H|
and

|CG(x)| = |G : H| = |M : N | = pn.
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Let y ∈ M \ N = xG. Then y = xg for some g ∈ G and so |CG(y)| = |M : N | =
|CG/N (Ny)| (the last equality holds as G/N is a Frobenius group with an elementary
abelian kernel M/N of order pn). Hence

|M : N | 6 |M : M ′| 6 |CM (y)| 6 |CG(y)| = |M : N |.
So

|CM/M ′(yM ′)| = |M : M ′| = |M : N | = |CG(y)| = |CM (y)|.
Thus M is a Camina group. Using the classification of Camina groups (see, for example,
[40]), one of the following cases holds:

(a) M is a Frobenius group with kernel M ′ = N . Since M/M ′ is elementary abelian,
we deduce that M/M ′ is cyclic and thus pn = p, which implies that |H/N | = p− 1
and so G/N is a Frobenius group of order p(p− 1).

(b) M is a Frobenius group with complement Q8, and p = 2. In this case, |M : N | =
|M : M ′| = 4 so M/N ∼= Z2 × Z2 and thus H/N ∼= Z3. Let K be the kernel of M .
Then K P G and G/K ∼= Q8:3 ∼= SL2(3).

(c) M is a p-group.

Finally, to complete the proof of the theorem, assume that G = G′. Then either case
(i)(c) or (iii) holds. Suppose that case (i)(c) holds. Then G/N is a Frobenius group with
a perfect Frobenius complement H/N . By [35, Theorem A], we have H/N ∼= SL2(5). In
particular, since |H/N | = 120 = pn − 1, we deduce that pn = 121 = 112. �

In view of Remark 5.4, by combining Lemma 5.1 and Theorem 5.6, the proof of Theorem
6 is now complete.
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