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Abstract. Let G be a finite group and let Irr(G) denote the set of all complex

irreducible characters of G. Let cd(G) be the set of all character degrees of G.
For a degree d ∈ cd(G), the multiplicity of d in G, denoted by mG(d), is the

number of irreducible characters of G having degree d. A finite group G is said
to be a Tk-group for some integer k ≥ 1 if there exists a nontrivial degree

d0 ∈ cd(G) such that mG(d0) = k and that for every d ∈ cd(G)− {1, d0}, the

multiplicity of d in G is trivial, that is, mG(d) = 1. In this paper, we show
that if G is a nonsolvable Tk-group for some integer k ≥ 1, then k = 2 and

G ∼= PSL2(5) or PSL2(7).

1. Introduction

Let G be a finite group and let Irr(G) = {χ1, χ2, · · · , χk} be the set of all complex
irreducible characters of G. Let cd(G) = {d0, d1, · · · , dt}, 1 = d0 < d1 < · · · < dt,
be the set of all character degrees of G. For an integer d ≥ 1, the multiplicity of
d in G, denoted by mG(d), is the number of irreducible characters of G having
the same degree d, i.e, mG(d) = |{χ ∈ Irr(G) | χ(1) = d}|. Let ni = χi(1) for
1 ≤ i ≤ k. We call mp(G) = (mG(d0),mG(d1), · · · ,mG(dt)) the multiplicity pattern
and (n1, n2, · · · , nk) the degree pattern of G. Let CG be the complex group algebra

of G. We know that CG =
⊕k

i=1 Mni
(C) and thus knowing the degree pattern

of G is equivalent to knowing the structure of the complex group algebra of G;
or equivalently the first column of the ordinary character table of G. One of the
main questions in character theory of finite groups is Brauer’s Problem 1 (see [6])
which asks for the possible degree patterns of finite groups. Recently, it has been
proved in [19, 9] that the order of a finite group is bounded in terms of the largest
multiplicity of its character degree. This gives a new restriction on the degree
patterns of finite groups. Motivated by this result, we want to explore the relations
between the multiplicities of character degrees of finite groups and the structure
of the groups. In fact, this problem has already attracted many researchers in the
literature (see [2, 3, 4, 11, 20]). In [20], G. Seitz classified all finite groups which
have exactly one nonlinear irreducible representation. This result was generalized in
[4] where the authors classified all finite groups G in which the multiplicity of every
nonlinear irreducible character degree G is trivial. Also, the finite groups in which
only two nonlinear irreducible characters have equal degrees have been classified
in [2, 3]. To generalize these results, we consider the following definition. A finite
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group G is called a Tk-group for some integer k ≥ 1 if there exists a nontrivial
degree d0 ∈ cd(G) with mG(d0) = k and that for every nontrivial degree d ∈ cd(G)
different from d0, we have mG(d) = 1. Obviously, the finite groups studied in [4, 20]
and [2, 3] are exactly T1-groups and T2-groups, respectively. In this paper, we
generalize results in [3] by proving.

Theorem A. Let G be a finite nonsolvable group. If G is a Tk-group for some
integer k ≥ 1, then G ∼= PSL2(5) or PSL2(7) and k = 2.

Using [8], the multiplicity patterns of PSL2(q) for q ∈ {5, 7} are (1, 2, 1, 1) and
(1, 2, 1, 1, 1), respectively. Suppose that G is a finite group such that mp(G) =
mp(PSL2(q)) with q ∈ {5, 7}. As the first entry of mp(G) is |G : G′| which is 1,
we can see that G is perfect and, in particular, G is a nonsolvable T2-group. Now
by applying Theorem A, we deduce that G ∼= PSL2(5) or PSL2(7). By comparing
the number of distinct character degrees, we deduce that G ∼= PSL2(q). It follows
that PSL2(q) with q ∈ {5, 7} are uniquely determined by the multiplicity patterns.
In fact, it is conjectured in [23] that every nonabelian simple group is uniquely
determined by the multiplicity pattern. Also, it has been shown in [23] that this
conjecture holds for every nonabelian simple groups with at most 7 distinct char-
acter degrees. We note that this conjecture, if true, is a generalization of a result
obtained in [24] where it is proved that all nonabelian simple groups are uniquely
determined by the structure of their complex group algebras. This latter result is
related to Brauer’s Problem 2 which asks the following question: What does CG
know about G? This is also an important question in character theory and has been
studied extensively (see the references in [24]). Notice that if the degree pattern
of a finite group G is given, then both cd(G) and mp(G) are known. Thus, apart
from being a direct generalization of the results obtained in [3], Theorem A could
be used to study questions raised in [23]. For finite solvable groups, if G is a fi-
nite Tk-group of odd order, then |cd(G)| ≤ 2 since G has only one real irreducible
characters which is the trivial character and thus every nontrivial character degree
of G has multiplicity at least 2. On the other hand, every finite group with exactly
two distinct character degrees is a solvable Tk-group for some integer k (see [13,
Corollary 12.6]) and a compete classification of such finite groups is yet to be found.
This together with the fact that there is no explicit upper bound for k makes the
classification of solvable Tk-groups quite complicated even for 2-groups.

Throughout this paper, all groups are finite and all characters are complex char-
acters. Let G be a group. If N �G and θ ∈ Irr(N), then the inertia group of θ in
G is denoted by IG(θ). We write Irr(G|θ) for the set of all irreducible constituents
of θG. The order of an element x ∈ G is denoted by |x|. Denote by Φk := Φk(q) the
value of the kth cyclotomic polynomial evaluated at q. Other notation is standard.

2. Preliminaries

In this section, we collect some results that will be needed in the next sections.
We begin with the following easy lemma.

Lemma 2.1. Let G be a group and let N � G such that G/N is cyclic of order
d ≥ 2. Assume that G has a nontrivial degree a with multiplicity m. Suppose that
a > d and m/d ≥ 2. Then N has a nontrivial degree b with multiplicity at least 2
and a/d ≤ b ≤ a.
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Proof. Assume first that χN is not irreducible for some χ ∈ Irr(G) with χ(1) = a.
Let θ ∈ Irr(N) be an irreducible constituent of χN . As G/N is cyclic, we deduce
from [13, Corollary 11.22] that θ is not G-invariant. Let I = IG(θ) and t := |G : I|.
Then t ≥ 2. By Clifford’s theorem [13, Theorem 6.2] and [13, Corollary 11.22]

again, we deduce that χN =
∑t
i=1 θi, where θi ∈ Irr(N) are distinct conjugates of

θ. Hence N has a nontrivial degree a/t with multiplicity at least t ≥ 2. Moreover,
as t | |G/N | = d, we deduce that a/d ≤ a/t ≤ a. Assume now that χN ∈ Irr(N)
for every χ ∈ Irr(G) with χ(1) = a. It follows that N has a nontrivial degree a
with multiplicity at least m/d ≥ 2 as each irreducible character χN ∈ Irr(N) has
exactly d extensions in G. Therefore, in both cases N has a nontrivial degree b with
1 < a/d ≤ b ≤ a with multiplicity at least 2. The proof is now complete. �

We note that when d in the previous lemma is a prime, then b ∈ {a, a/d}. As an
application of this lemma, we obtain the following corollary.

Corollary 2.2. Let G be a group and let N �G such that G/N is cyclic of order
d ≥ 2. Assume that G has two nontrivial degrees ai, i = 1, 2, with multiplicity
mi, i = 1, 2, respectively. Suppose that a2/d > a1 > d and mi ≥ 2d for i = 1, 2.
Then N is not a Tk-group for any integer k ≥ 1.

Proof. By Lemma 2.1, for i = 1, 2, N has two nontrivial character degrees di such
that ai/d ≤ di ≤ ai, each with multiplicity at least 2. Now we have d2 ≥ a2/d >
a1 ≥ d1 ≥ a1/d > 1 by the hypothesis. Hence di, i = 1, 2 are nontrivial distinct
character degrees of N and both degrees have nontrivial multiplicity, so N is not a
Tk-group for any integer k ≥ 1. �

The next result is well known. We refer to [7, 13.8, 13.9] for the notion of symbols
and the classification of the unipotent characters of finite groups of Lie type.

Lemma 2.3. Let S be a nonabelian simple group. Then the following hold:

(1) If S is a sporadic simple group, the Tits group or an alternating group of
degree at least 7, then S has two nontrivial irreducible characters θi, i = 1, 2
with distinct degree such that both θi extend to Aut(S).

(2) If S is a simple group of Lie type in characteristic p and S 6= 2F4(2)′, then
the Steinberg character of S, denoted by StS of degree |S|p, is extendible
to Aut(S). Furthermore, if S 6∼= PSL2(3f ), then S possesses an irreducible
character θ such that θ(1) 6= |S|p and θ also extends to Aut(S).

Proof. The first statement follows from Theorems 3 and 4 in [5]. For (2), the
existence and extendibility of the Steinberg character of S is well known. Now
assume that S 6∼= PSL2(q) with q = pf , then we can choose θ to be any unipotent
character of S which is not one of the exceptions in [17, Theorem 2.5] and not
the Steinberg character of S, then θ is extendible to Aut(S). (See [7, § 13.8, 13.9].)
Finally, assume that S ∼= PSL2(q) with q = pf and p 6= 3. Then S has an irreducible
character θ of degree q+ δ, where q ≡ δ (mod 3) and δ ∈ {±1} such that θ extends
to Aut(S). Notice that this irreducible character of S corresponds to a semisimple
element of order 3 in the dual group SL2(q). �

The following result due to Zsigmondy will be useful.

Lemma 2.4. (Zsigmondy [26]). Let q ≥ 2 and n ≥ 3 be integers such that (n, q) 6=
(6, 2). Then qn − 1 has a prime factor ` such that ` ≡ 1 (mod n) and ` does not
divide qm − 1 for any m < n.
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Table 1. Two tori for classical groups

G = G(q) |T1| |T2| `1 `2
An (qn+1 − 1)/(q − 1) qn − 1 `n+1(q) `n(q)
2An, (n ≡ 0(4)) (qn+1 + 1)/(q + 1) qn − 1 `2n+2(q) `n(q)
2An, (n ≡ 1(4)) (qn+1 − 1)/(q + 1) qn + 1 `(n+1)/2(q) `2n(q)
2An, (n ≡ 2(4)) (qn+1 + 1)/(q + 1) qn − 1 `2n+2(q) `n/2(q)
2An, (n ≡ 3(4)) (qn+1 − 1)/(q + 1) qn + 1 `n+1(q) `2n(q)
Bn,Cn (n ≥ 3 odd) qn + 1 qn − 1 `2n(q) `n(q)
Bn,Cn (n ≥ 2 even) qn + 1 (qn−1 + 1)(q + 1) `2n(q) `2n−2(q)
Dn, (n ≥ 5 odd) (qn−1 + 1)(q + 1) qn − 1 `2n−2(q) `n(q)
Dn, (n ≥ 4 even) (qn−1 + 1)(q + 1) (qn−1 − 1)(q − 1) `2n−2(q) `n−1(q)
2Dn qn + 1 (qn−1 + 1)(q − 1) `2n(q) `2n−2(q)

Such an ` is called a primitive prime divisor and is denoted by `n(q).
The orders of two maximal tori and the corresponding primitive prime divisors of

the finite classical groups are given in Table 1. This is taken from [16, Table 3.5]. In
Table 2, we list the degrees of some unipotent characters of the simple exceptional
groups of Lie type. This can be found in [7, §13.9].

3. Simple Tk-groups

The main purpose of this section is to classify all simple Tk-group. As we will
see shortly, there are only two simple Tk-groups and they are exactly the simple
T2-groups. Let L be the set consisting of the following simple groups:

PSL2(q),PSL3(q), PSU3(q),PSp4(q),
PSL6(2),PSL7(2),PSU4(2), PSp6(2),PSp8(2),PΩ±8 (2)

and
PSL4(2),PSU4(3),PSU5(2),PSp6(3),Ω7(3),
PSp8(3),Ω9(3),PΩ±8 (3),PΩ+

10(2),PΩ−10(3).

The following result will be needed when dealing with simple classical groups of
Lie type. We refer to [11, §4.3] and [14, Theorem 4.7] for some related results.

Lemma 3.1. Let G be a simply connected simple algebraic group of classical type
and let F be a suitable Frobenius map such that S ∼= G F /Z(G F ) is a simple classical
group of Lie type defined over a finite field of size q with S 6∈ L . Let the pair
(G ∗, F ∗) be dual to (G , F ) and let G = (G ∗)F

∗
. For i = 1, 2, let Ti be the maximal

tori of G with order given in Table 1. Then for each i, there exist two regular
semisimple elements si, ti ∈ Ti such that si, ti ∈ Ti ∩G′ and that si and ti are not
G-conjugate.

Proof. Since G is of simply connected type, the dual group G ∗ is of adjoint type
and thus by using the identifications with classical groups as given in [7, Page 40],
G/S is either a cyclic or an elementary abelian group of order 4. In all cases, G/S
is abelian and so G′ = S. For each i = 1, 2, let T ′i = Ti ∩G′. Since G′ � TiG

′ ≤ G,
we obtain that |T ′i | = |Ti ∩ G′| ≥ |Ti|/d with d := |G : G′|. Since S 6∈ L , both
primitive prime divisors `i, i = 1, 2 in Table 1 exist.
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Claim 1: For i = 1, 2, every element si ∈ Ti of order `i is a regular semisimple
element and si ∈ Ti ∩G′ = T ′i .

Observe that the two maximal tori of G with order given in Table 1 have the
properties that they are uniquely determined up to conjugation by their orders.
Furthermore, for each i = 1, 2, the conjugacy class of maximal tori containing Ti
is the only class of maximal tori whose order is divisible by `i. Also, the Sylow
`i-subgroups of G are cyclic. Let si ∈ Ti be a semisimple element of order `i. As
in the proof of [18, Proposition 2.4], if CG(si) is not a torus, then its semisimple
rank is at least 1, and thus it contains two maximal tori of different orders. Both
of these tori must have orders divisible by `i, which is impossible. Hence we obtain
that CG(si) = Ti. Since gcd(`i, |G : G′|) = 1, we deduce that si ∈ G′ and so
si ∈ T ′i = Ti ∩G′.

Claim 2: For every x ∈ Ti, if |x| is divisible by `i, then x is a regular semisimple
element.

Assume that x ∈ Ti such that |x| = m`i where m ≥ 1 is an integer. Let
s = xm ∈ Ti. Then |s| = `i and so by Claim 1, we know that CG(s) = Ti, hence
Ti ≤ CG(x) ≤ CG(xm) = CG(s) = Ti. So, CG(x) = Ti and x is a regular semisimple
element.

Claim 3: If T ′i = Ti ∩G′ has no element whose order is a proper multiple of `i,
then T ′i contains two distinct G-conjugacy classes of regular semisimple elements
of order `i.

For i = 1, 2, let T ′′i be a cyclic subgroup of T ′i whose order is divisible by `i.
By our assumption, we must have that |T ′′i | = `i and so T ′′i = 〈si〉, where si is
an element of order `i. As si is regular semisimple by Claim 1, we deduce that
NG(〈si〉) ≤ NG(Ti) and so as the Sylow `i-subgroup of Ti is cyclic and |si| = `i, we
obtain that NG(〈si〉) = NG(Ti). Since CG(si) = Ti = CG(Ti) and |NG(Ti)/Ti| ≤
m(S), we deduce that |NG(〈si〉)/CG(si)| ≤ m(S), where m(S) is the dimension of
the natural module for S = G′ over Fq. (Notice that the fact |NG(Ti)/Ti| ≤ m(S)
can be deduced from [1, Lemma 4.7].) It follows that si is G-conjugate to at most
m(S) of its powers and thus T ′′i = 〈si〉 contains at least ϕ(|si|)/m(S) G-conjugacy
classes of regular semisimple elements of order `i, where ϕ is the Euler ϕ-function.
Since |si| = `i, we deduce that ϕ(|si|)/m(S) = (|`i| − 1)/m(S) ≥ (|T ′′i | − 1)/m(S).
We now verify that for each possibility of S, we have that (|T ′′i | − 1)/m(S) ≥ 2,
which implies that T ′i contains at least two distinct G-conjugacy classes of regular
semisimple elements of order `i.

(a) Assume first that S ∼= PSLn(q). Then m(S) = n and d = gcd(n, q−1). Since
Ti, i = 1, 2 are cyclic, we deduce that both T ′i are also cyclic of order at least |Ti|/d.
Hence we can choose T ′′i = T ′i for i = 1, 2. Then |T ′′1 | ≥ (qn − 1)/(d(q − 1)) and
|T ′′2 | ≥ (qn−1−1)/d. As S 6∈ L , it is routine to check that qn−1−1 ≥ (2n+1)(q−1)
and so since q − 1 ≥ d = gcd(n, q − 1), we obtain that qn−1 − 1 ≥ (2n + 1)d or
equivalently (|T ′′2 | − 1)/n ≥ 2. Similarly, we can check that (|T ′′1 | − 1)/n ≥ 2.

(b) Assume that S ∼= PSUn(q) and n ≥ 5 is odd. We have that m(S) = n
and d = gcd(n, q + 1). As in the previous case, we see that both Ti are cyclic and
so are T ′i , hence we can choose T ′′i = T ′i . Then |T ′′1 | ≥ (qn + 1)/(d(q + 1)) and
|T ′′2 | ≥ (qn−1−1)/d. Since qn−1−1 > (qn+1)/(q+1) and d = gcd(n, q+1) ≤ q+1,
it suffices to show that (qn + 1) ≥ (2n+ 1)(q + 1)2 with n ≥ 5 odd. Since S 6∈ L ,
we can check that the previous inequality holds so that (|T ′′i | − 1)/m(S) ≥ 2 for
i = 1, 2, as required.
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(c) Assume that S ∼= PSUn(q) and n ≥ 4 is even. Arguing as in the case n is odd,
we have that |T ′′1 | ≥ (qn − 1)/(d(q+ 1)) and |T ′′2 | ≥ (qn−1 + 1)/d. Since qn−1 + 1 >
(qn − 1)/(q + 1) and d ≤ q + 1, it suffices to show that qn − 1 ≥ (2n + 1)(q + 1)2

where n ≥ 4 is even. As S 6∈ L , we can check that the previous inequality holds so
that (qn−1)/(n(q+1)2) ≥ 2 and thus (|T ′′i |−1)/m(S) ≥ 2 for i = 1, 2, as required.

(d) Assume that S ∼= PSp2n(q) or Ω2n+1(q) and n ≥ 3 is odd. We have that
m(S) ≤ 2n+1 and d = gcd(2, q−1). In this case both Ti are cyclic, so we can choose
T ′′i = T ′i and hence |T ′′1 | ≥ (qn + 1)/d and |T ′′2 | ≥ (qn− 1)/d. Since qn + 1 > qn− 1,
it suffices to show that qn−1 ≥ (4n+3)d, where n ≥ 3 is odd and d = gcd(2, q−1).
Since S 6∈ L , we can check that the latter inequality holds, so for i = 1, 2, we
obtain that (|T ′′i | − 1)/m(S) ≥ 2.

(e) Assume that S ∼= PSp2n(q) or Ω2n+1(q) and n ≥ 4 is even. We can choose
|T ′′1 | = |T ′1| ≥ (qn+1)/d and |T ′′2 | ≥ (qn−1+1)/d. Since qn+1 > qn−1+1, it suffices
to show that qn−1 + 1 ≥ (4n+ 3)d, where n ≥ 4 is even and d = gcd(2, q− 1). Since
S 6∈ L , we can check that the latter inequality holds, so for i = 1, 2, we have that
(|T ′′i | − 1)/m(S) ≥ 2.

(f) Assume that S ∼= PΩ+
2n(q) where n ≥ 5 is odd. Then m(S) = 2n and

d = gcd(4, qn − 1). We have |T ′′1 | ≥ (qn−1 + 1)/d and |T ′′2 | ≥ (qn − 1)/d. Since
qn − 1 > qn−1 + 1, it suffices to show that qn−1 + 1 ≥ (4n + 1)d, where n ≥ 5 is
odd. Since S 6∈ L , we can check that the latter inequality holds, so for i = 1, 2, we
obtain that (|T ′′i | − 1)/m(S) ≥ 2.

(g) Assume that S ∼= PΩ+
2n(q) where n ≥ 4 is even. Then |T ′′1 | ≥ (qn−1 + 1)/d

and |T ′′2 | ≥ (qn−1 − 1)/d. Since qn−1 + 1 > qn−1 − 1, it suffices to show that
qn−1 − 1 ≥ (4n + 1)d, where n ≥ 4 is even. Since S 6∈ L , we can check that the
latter inequality holds, so for i = 1, 2, (|T ′′i | − 1)/m(S) ≥ 2.

(h) Assume that S ∼= PΩ−2n(q) where n ≥ 4. Then |T ′′1 | ≥ (qn + 1)/d and |T ′′2 | ≥
(qn−1 + 1)/d. Since qn+ 1 > qn−1 + 1, it suffices to show that qn−1 + 1 ≥ (4n+ 1)d,
where n ≥ 4. Since S 6∈ L , we can check that the latter inequality holds, so for
i = 1, 2, (|T ′′i | − 1)/m(S) ≥ 2 as wanted. This completes the proof of Claim 3.

Finally, by Claim 1, to finish the proof of the lemma, we only need to find
a regular simisimple element ti ∈ T ′i such that ti is not G-conjugate to si for
i = 1, 2. Now, for each i, if T ′i contains an element whose order is a proper multiple
of `i, then this element is a regular semisimple element by Claim 2 and clearly
it is not G-conjugate to si as the orders of these two semisimple elements are
distinct. Otherwise, if no such elements exists, then by Claim 3 we can find a
regular semisimple element ti ∈ T ′i with the same order as that of si and they are
not G-conjugate. The proof is now complete. �

We now prove the main result of this section.

Theorem 3.2. Let S be a nonabelian simple group. If S is a Tk-group for some
integer k ≥ 1, then k = 2 and S ∼= PSL2(5) or PSL2(7).

Proof. Using the classification of finite simple groups, we consider the following
cases:

(1) S is a sporadic simple group or the Tits group. It is routine to check using [8]
that S has at least two nontrivial distinct degrees, each with multiplicity at least
2. Hence S is not a Tk-group for any integer k ≥ 1.

(2) S ∼= An with n ≥ 5. If n = 5, then cd(A5) = {1, 3, 4, 5} and every degree
of A5 has multiplicity 1, except for the degree 3 with multiplicity 2. Hence A5 is
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Table 2. Some unipotent characters of simple exceptional groups
of Lie type

S = S(q) Symbol Degree
2G2(q2) cuspidal 1√

3
qΦ1Φ2Φ4

cuspidal 1
2
√
3
qΦ1Φ2Φ′12

2F4(q2) (2B2[a], 1), (2B2[b], 1) 1√
2
qΦ1Φ2Φ2

4Φ6

(2B2[a], ε), (2B2[b], ε) 1√
2
q13Φ1Φ2Φ2

4Φ6

G2(q) φ′1,3, φ
′′
1,3

1
3qΦ3Φ6

G2[θ],G2[θ2] 1
3qΦ

2
1Φ2

2

F4(q) φ′8,3, φ
′′
8,3 q3Φ2

4Φ8Φ12

φ′8,9, φ
′′
8,9 q9Φ2

4Φ8Φ12
2E6(q) 2E6[θ], 2E6[θ2] 1

3q
7Φ4

1Φ6
2Φ2

4Φ8Φ10

E6(q) E6[θ],E6[θ2] 1
3q

7Φ6
1Φ4

2Φ2
4Φ5Φ8

E7(q) E7[ξ],E7[−ξ] 1
2q

11Φ7
1Φ3

3Φ2
4Φ5Φ7Φ8Φ9Φ12

E6[θ],E6[θ2] 1
3q

7Φ6
1Φ6

2Φ2
4Φ5Φ7Φ8Φ10Φ14

E8(q) (E7[ξ], 1), (E7[−ξ], 1) 1
2q

11Φ7
1Φ4

3Φ4
4Φ2

5Φ7Φ2
8Φ9Φ2

12Φ15Φ20Φ24

(E7[ξ], ε), (E7[−ξ], ε) 1
2q

26Φ7
1Φ4

3Φ4
4Φ2

5Φ7Φ2
8Φ9Φ2

12Φ15Φ20Φ24

a T2-group. Now assume that n ≥ 6. For 6 ≤ n ≤ 13, we can check that An is
not a Tk-group by using [8]. Thus we can assume that n ≥ 14. Let λ be a self-
conjugate partition of n and denote by χλ the irreducible character of Sn labeled
by λ. Then χλ when restricted to An will split into the sum of two irreducible
characters having the same degree χλ(1)/2. Thus χλ(1)/2 ∈ cd(An) has multiplicity
at least two. Therefore, in order to show that An is not a Tk-group for any k ≥ 1,
it suffices to find two distinct self-conjugate partitions λi, i = 1, 2, of n such that
χλi(1)/2, i = 1, 2 are distinct and nontrivial.

Assume first that n ≥ 15 is odd. We can write n = 2k + 9 = 2(k + 4) + 1. Then
λ1 = (k+ 5, 1k+4) and λ2 = (k+ 3, 32, 1k) are two distinct self-conjugate partitions
of n. Assume next that n ≥ 14 is even. Write n = 2k+8. Then λ1 = (k+4, 2, 1k+2)
and λ2 = (k + 3, 32, 1k) are two distinct self-conjugate partitions of n. Using Hook
formula, we can easily check that χλi(1)/2 are distinct and nontrivial for i = 1, 2.
Thus An is not a Tk-group for n ≥ 14.

(3) S is a simple exceptional group of Lie type in characteristic p.
Assume first that S ∼= 2B2(q2), where q2 = 22m+1 and m ≥ 1. By [22], S has

irreducible characters of degree
√

2q(q2 − 1)/2 and q4 + 1, with multiplicity 2 and
(q2 − 2)/2, respectively. Hence S is not a Tk-group for any k ≥ 1.

Assume next that S ∼= 3D4(q). If q = 2, then 3D4(2) is not a Tk-group for any
integer k ≥ 1 by using [8]. Hence we can assume that q ≥ 3. By [10, Table 4.4],
S has degrees (q3 + δ)(q2 − δq + 1)(q4 − q2 + 1) with multiplicity 1

2q(q + δ), where
δ = ±1. Since q ≥ 3, we deduce that these two degrees are distinct and nontrivial
and q(q + 1)/2 ≥ q(q − 1)/2 ≥ 3, so S is not a Tk-group.

Assume that S ∼= E6(q) and let G = E6(q)ad. Let d = |G : S| = gcd(3, q− 1). By
[15], G has an irreducible character χ of degree

χ(1) =
1

2
q3Φ2

1Φ2
3Φ4Φ5Φ2

6Φ8Φ9Φ12 with mG(χ(1)) ≥ q(q − 1).
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Obviously, χ(1) > d and mG(χ(1)) ≥ 2d. By Lemma 2.1, S has a nontrivial degree
b ∈ {χ(1), χ(1)/d} with nontrivial multiplicity. By Table 2, S also has a nontriv-
ial degree ψ(1) with multiplicity at least 2. Observe that ψ(1) 6∈ {χ(1), χ(1)/d}.
Therefore, S has two distinct nontrivial degrees, each with multiplicity at least 2,
so S is a not a Tk-group.

The same argument applies to the simple group S ∼= 2E6(q) with q > 2 since
G = 2E6(q)ad has a degree

χ(1) =
1

2
q3Φ2

2Φ3Φ4Φ3
6Φ8Φ10Φ12Φ18 with mG(χ(1)) ≥ (q + 1)(q − 2),

|G : S| = gcd(3, q + 1) =: d; and S has a nontrivial degree ψ(1) 6∈ {χ(1), χ(1)/d}
with multiplicity at least 2 by Table 2. For the case q = 2, we can check that 2E6(2)
is not a Tk-group by using [8].

Finally, for the remaining simple exceptional groups of Lie type, by Table 2 each
simple group S has two distinct nontrivial degrees, each with multiplicity at least
2, so S is not a Tk-group.

(4) Assume that S is a simple classical group in characteristic p.
(41) Assume first that S 6∈ L . We consider the following set up. Let G be a

simply connected simple algebraic group of classical type and let F be a suitable
Frobenius map such that L/Z(L) ∼= S, where L = G F . Let the pair (G ∗, F ∗) be dual
to (G , F ) and let G = (G ∗)F

∗
. Let T ≤ G be a maximal torus of G. By Deligne-

Lusztig’s theory, for each G-conjugacy class of regular semisimple element s ∈ T,
there exists a simisimple character χs ∈ Irr(L) with degree |G : T |p′ and if s ∈ G′,
then Z(L) ⊆ kerχs, so χs is an irreducible character of L/Z(L) ∼= S. Moreover,
if t ∈ T ∩ G′ is also a regular semisimple element which is not G-conjugate to s,
then the semisimple character χt ∈ Irr(L) is an irreducible character of S with the
same degree as that of χs and thus the nontrivial degree |G : T |p′ ∈ cd(S) has
multiplicity at least 2.

Since S 6∈ L , by Lemma 3.1 G contains two maximal tori Ti, i = 1, 2 such that
each T ′i = Ti ∩ G′ possesses two regular semisimple elements si and ti which are
not G-conjugate. By the discussion above, we deduce that each nontrivial degree
|G : Ti|p′ ∈ cd(S) has multiplicity at least 2. Since |G : Ti|p′ , i = 1, 2 are distinct
and nontrivial, we deduce that S is not a Tk-group for any integer k ≥ 1.

(42) Assume next that S ∈ L .
(a) Assume first that S ∼= PSL2(q) with q ≥ 4. As PSL2(4) ∼= PSL2(5) ∼= A5,

we can assume that q ≥ 7. If q = 7, then PSL2(7) is a T2-group by using [8].
Hence we assume that q ≥ 8. If q is even, then S ∼= SL2(q) has degrees q − 1 and
q + 1 with multiplicity q/2 and q/2− 1, respectively. Since q ≥ 8, we can see that
q/2 > q/2 − 1 ≥ 3, so S is not a Tk-group. Now assume that q ≥ 9 is odd. Since
PSL2(9) ∼= A6, we can assume that q ≥ 11. We know that S has two irreducible
characters of degree (q+ ε)/2 where q ≡ ε (mod 4) and ε ∈ {1,−1}. Furthermore, S
has a nontrivial degree q − 1 with multiplicity (q − δ)/4, where q ≡ δ (mod 4) and
δ ∈ {1, 3}. As (q−1)/4 > (q−3)/4 ≥ (11−3)/4 = 2 and q−1 > (q+1)/2 ≥ (q−1)/2,
S has two distinct nontrivial degrees, each with multiplicity at least 2 and thus S
is not a Tk-group.

(b) Assume that S ∼= PSL3(q). Since PSL3(2) ∼= PSL2(7), we can assume that
q ≥ 3. For 3 ≤ q ≤ 11, we can check that PSL3(q) is not a Tk-group by using [8].
So, we assume that q ≥ 13. In this case, by [21] S has degrees d1 = q2 + q + 1
and d2 = q(q2 + q + 1), both with multiplicity (q − 1)/d − 1. Since q ≥ 13 and
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d = gcd(3, q− 1) ≤ 3, it follows that (q− 1)/d− 1 ≥ (q− 1)/3− 1 ≥ 2 and hence S
is not a Tk-group in these cases.

(c) Assume that S ∼= PSU3(q). Since PSU3(2) is not simple, we can assume that
q ≥ 3. For 3 ≤ q ≤ 9, we can check that PSU3(q) is not a Tk-group by using [8].
So, we assume that q ≥ 11. In this case, by [21] S has degrees d1 = q2 − q + 1
and d2 = q(q2 − q + 1), both with multiplicity (q + 1)/d − 1. Since q ≥ 11 and
d = gcd(3, q + 1) ≤ 3, it follows that (q + 1)/d− 1 ≥ (q + 1)/3− 1 ≥ 2. Thus S is
not a Tk-group.

(d) Assume that S ∼= PSp4(q) with q ≥ 3. If q ≥ 4 is even, then S possesses two
distinct nontrivial degrees q(q2 + 1)/2 and (q− 1)(q2 + 1) with multiplicity 2 and q
respectively by using [15]. Now assume that q ≥ 3 is odd. Using [15] again, G has
two distinct nontrivial character degrees a1 := 2q(q2+1)/2 and a2 := (q+1)(q2+1)
with multiplicity 4 and 3(q − 3)/2, respectively. Since d = |G : S| = 2, we deduce
that a2/d > a1 > d. If q ≥ 5, then 3(q − 3)/2 ≥ 2d = 4 and 4 ≥ 2d, so it follows
from Corollary 2.2 that S is not a Tk-group. For the remaining cases, we can check
directly using [8] that S is not a Tk-group.

(e) Finally, for the remaining simple groups in L , it is routine to check using
[12] that S is not a Tk-group for any k ≥ 1. The proof is now complete. �

4. Nonsolvable Tk-groups

We first prove a special case of the main theorem. In fact, we show that non-
perfect Tk-groups must be solvable. We note that if G is a Tk-group for some integer
k ≥ 1 and N �G, then since Irr(G/N) ⊆ Irr(G), we can easily see that G/N is also
a Tm-group for some integer m ≤ k.

Theorem 4.1. If G is a non-perfect Tk-group for some k ≥ 1, then G is solvable.

Proof. LetG be a counterexample to the theorem with minimal order. ThenG′ 6= G
and G is a Tk-group for some k ≥ 1 but G is nonsolvable. Let M be the last term
of the derived series of G and let N �G such that M/N is a chief factor of G. Since
G is nonsolvable, we see that M is nontrivial and hence it is perfect, so M/N is
nonabelian and M/N ∼= W t for some nonabelian simple group W and some integer
t ≥ 1. Then M/N is a minimal normal subgroup of G/N and that

|G/N : (G/N)′| = |G/N : G′/N | = |G : G′| > 1

as G is non-perfect and N ≤ M ≤ G′. It follows that G/N is a non-perfect non-
solvable group and since Irr(G/N) ⊆ Irr(G), we deduce that G/N is a non-perfect
nonsolvable Tm-group for some integer m ≥ 1. If N is nontrivial, then |G/N | < |G|,
which contradicts the minimality of |G|. Therefore, we conclude that N must be
trivial and M ∼= W t.

Claim 1: M ∼= PSL2(3f ) for some f ≥ 2.
We first show that W ∼= PSL2(3f ) with f ≥ 2. Suppose by contradiction that

W 6∼= PSL2(3f ) with f ≥ 2. Then there exist two irreducible characters θi ∈ Irr(W )
such that θ1(1) 6= θ2(1) and both θi extend to Aut(W ) by Lemma 2.3. Let ϕi =
θti ∈ Irr(M) for i = 1, 2. By [5, Lemma 5], we deduce that both ϕi extend to
χi ∈ Irr(G). Furthermore, by Gallagher’s theorem [13, Corollary 6.17] we know
that each ϕi has exactly |G/M : (G/M)′| = |G : G′| extensions. For each i, all
extensions of ϕi have the same degree which is ϕi(1) = θti(1) > 1. So, G has two
distinct nontrivial degrees θti(1), i = 1, 2, both with nontrivial multiplicity, which is
a contradiction. Hence W ∼= PSL2(3f ) with f ≥ 2 as we wanted.
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We now claim that t = 1 and thus M ∼= PSL2(3f ) with f ≥ 2. By way of
contradiction, assume that t ≥ 2. Let θ be the Steinberg character of W. Then
ϕ = θt ∈ Irr(M) extends to ϕ0 ∈ Irr(G) by [5, Lemma 5]. Thus by Gallagher’s
theorem [13, Corollary 6.17] again, we have that ϕ0(1) = ϕ(1) = θ(1)t is a nontrivial
degree with nontrivial multiplicity. It follows that if d ∈ cd(G) with 1 < d 6=
θ(1)t = 3tf , then the multiplicity of d is trivial. It is well know that PSL2(3f ) has
two irreducible characters of degree (3f +ε)/2, where 3f ≡ ε (mod 4) and ε ∈ {±1},
hence PSL2(3f ) has a nontrivial degree (3f + ε)/2 < 3f with multiplicity 2. Denote
these two irreducible characters by αi, i = 1, 2. For i = 1, 2, let

ϕi = 1× 1× · · · × αi ∈ Irr(M)

and

ψ = 1× 1× · · · × θ ∈ Irr(M).

Let I, I1 and I2 be the inertia groups of ψ, ϕ1 and ϕ2, respectively. Obviously, we
have that M ≤ Ii ≤ I ≤ G for i = 1, 2. By the representation theory of wreath
products, we know that ψ extends to ψ0 ∈ Irr(I) and |G : I| = t. Since G/M
is solvable, we deduce that I/M is solvable. If I/M is nontrivial, then I/M has
j > 1 linear characters and thus ψ has j distinct extensions to I, which are ψ0λ
with λ ∈ Irr(I/M) and λ(1) = 1, so by Clifford’s theorem [13, Theorem 6.11] we
have that (ψ0λ)G ∈ Irr(G) are distinct irreducible characters of G having the same
degree. Furthermore, for λ ∈ Irr(I/M) with λ(1) = 1, we have

(ψ0λ)G(1) = ψG0 (1) = |G : I|ψ0(1) = 3f · t < 3tf .

The last inequality holds since t ≥ 2. But then this is a contradiction since the mul-
tiplicity of the nontrivial degree 3f · t is at least |I/M : (I/M)′| which is nontrivial
by our assumption. Therefore, we conclude that I/M is trivial and so I = M. It
follows that for i = 1, 2, we have Ii = I = M since M ≤ Ii ≤ I = M. Thus for each
i, we have ϕGi ∈ Irr(G) and

ϕGi (1) = |G : M |αi(1) = |G : M |(3f + ε)/2

which is nontrivial and different from 3ft. Clearly, ϕG1 6= ϕG2 , so we deduce that G
has a nontrivial degree |G : M |(3f + ε)/2 6= 3ft with multiplicity at least 2, which
is impossible. This contradiction proves our claim.

Claim 2: G is an almost simple group with socle M.
By the previous claim, we know that M ∼= PSL2(3f ) with f ≥ 2. Let C =

CG(M). Then C�G and G/C is an almost simple group with socle MC/C. Assume
first that G/C is perfect. Then G = MC and since M is nonabelian simple, we
must have that M ∩ C = 1 and so G = M × C, where G/M ∼= C is solvable. If
C is nontrivial, then |C : C ′| > 1 and so for each nontrivial irreducible character
µ ∈ Irr(M) of M, we see that µ has |C : C ′| extensions to G = M × C and
thus G cannot be a Tk-group for any k ≥ 1. Hence C must be trivial and so G is
simple, which is impossible as G 6= G′. Assume next that G/C is non-perfect. Then
G/C is a non-perfect nonsolvable Tm-group for some m ≥ 1. By the minimality of
|G|, we must have that C = 1 and thus G is an almost simple group with socle
M ∼= PSL2(3f ).

The Final Contradiction. Let q = 3f , with f ≥ 2. Let α be an irreducible
character of M with α(1) = (q + ε)/2 where q ≡ ε (mod 4) and ε ∈ {±1}, let δ
be the diagonal automorphism of M and let ϕ be the field automorphism of M
of order f. Then Out(M) = 〈δ〉 × 〈ϕ〉. Since G is non-perfect, we deduce that
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|G : M | is nontrivial. Observe that the Steinberg character StM of M is extendible
to Aut(M) and so it extends to G by [5, Lemma 5], hence by Gallagher’s theorem
[13, Corollary 6.17] the degree StM (1) = |M |3 has multiplicity at least |G : M | > 1.
Thus the multiplicity of every nontrivial degree of G different from |M |3 = q must
be trivial. By [25, Lemma 4.6], α is ϕ-invariant. Now if G ≤ M〈ϕ〉, then α is
G-invariant and since G/M is cyclic, α extends to G and so G has a nontrivial
degree (q + ε)/2 with multiplicity at least |G : M | ≥ 2, which is impossible. Hence
G 6≤M〈ϕ〉. By [25, Theorem 6.5], we have IG(α) = G∩M〈ϕ〉 and |G : IG(α)| = 2.
If |IG(α) : M | > 1, then α has |IG(α) : M | extensions to IG(α) as IG(α)/M
is cyclic and thus by inducing these characters to G, we see that G has at least
|IG(α) : M | ≥ 2 irreducible characters of degree q + ε, which is a contradiction.
Thus, we conclude that IG(α) = M and |G : M | = 2. By [25, Corollary 6.2], we
have that either G ∼= PGL2(q) or G ∼= M〈δϕf/2〉, where f is even. Clearly, the
first case cannot happen. For the latter case, since f is even, we obtain that q ≡ 1
(mod 4), so M has exactly (q − 1)/4 irreducible characters of degree q − 1. As
|G : M | = 2, by [25, Theorem 6.6] all irreducible characters of G lying over an
irreducible character of M of degree q − 1 have degree 2(q − 1). Therefore, G has
at least (q − 1)/8 irreducible characters of degree 2(q − 1). If q = 9, then we can
check directly using [8] that all almost simple groups with socle PSL2(9) ∼= A6 are
not Tk-groups for any integer k ≥ 1. Thus we can assume that q ≥ 81 as f is even,
so (q − 1)/8 ≥ 10, hence G is not a Tk-group. This final contradiction proves our
theorem. �

We are now ready to prove the main theorem.

Proof of Theorem A. Let G be a counterexample to the theorem with minimal
order. Then G is a nonsolvable Tk-group for some integer k ≥ 1 but G is isomorphic
to neither PSL2(5) nor PSL2(7). If G′ 6= G, then G is solvable by Theorem 4.1,
which is a contradiction. Thus we can assume that G is perfect. Let M be a
maximal normal subgroup of G. Then G/M is a nonabelian simple group. Since
Irr(G/M) ⊆ Irr(G), we deduce that G/M is a Tm-group for some m ≥ 1. Now by
Theorem 3.2, we have that G/M ∼= PSL2(q) with q ∈ {5, 7} and G/M is a T2-group.
Since G is a counterexample to the theorem, we deduce that M is nontrivial.

By [8], we know that cd(PSL2(5)) = {1, 3, 4, 5} with multiplicity 1, 2, 1, 1 and
cd(PSL2(7)) = {1, 3, 6, 7, 8} with multiplicity 1, 2, 1, 1, 1. Since G is a Tk-group, we
deduce that the degree 3 ∈ cd(G/M) is the unique nontrivial character degree in
cd(G) with nontrivial multiplicity and also k ≥ 2. If k = 2, then G must be isomor-
phic to either PSL2(5) or PSL2(7) by [3, Main Theorem], which is a contradiction.
Therefore, we must have that k ≥ 3. Hence there exists χ ∈ Irr(G|M) with χ(1) = 3
and thus χ ∈ Irr(G|θ) for some nontrivial irreducible character θ of M. By Clifford’s
theorem [13, Theorem 6.2], we have that χM = e(θ1 +θ2 + · · ·+θt), where all θi are
conjugate to θ in G, e ≥ 1 is the degree of an irreducible projective representation
of IG(θ)/M and t = |G : IG(θ)|. Since χ(1) = 3, we have that 3 = etθ(1) and hence
t ≤ 3. As the index of a proper subgroup of G/M with G/M ∼= PSL2(5) or PSL2(7)
is at least 5, we must have that t = 1, so χM = eθ and θ is G-invariant. If θ is ex-
tendible to θ0 ∈ Irr(G), then θ0(1) = θ(1) ≥ 2 since G is perfect; also by Gallagher’s
theorem [13, Corollary 6.17], we obtain that Irr(G|θ) = {θ0λ|λ ∈ Irr(G/M)}. It fol-
lows that χ = µθ0 for some µ ∈ Irr(G/M). As 3 = χ(1) = µ(1)θ(1) and θ(1) ≥ 2,
we must have that µ(1) = 1 and θ(1) = 3. Since 3 ∈ cd(G/M) has multiplicity 2,
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there exist two distinct irreducible characters λi, i = 1, 2 of G/M with λi(1) = 3
and so θ0λi, i = 1, 2 are two distinct irreducible characters of G, both have degree
9. Thus 9 ∈ cd(G) has multiplicity at least 2 which is a contradiction as 3 ∈ cd(G)
already has nontrivial multiplicity. Thus θ is G-invariant but it is not extendible
to G. As the Schur multiplier of PSL2(q) with q ∈ {5, 7} is cyclic of order 2, by
the theory of character triple isomorphism [13, Chapter 11], the triple (G,M, θ)
must be isomorphic to (SL2(q), A, λ), where q ∈ {5, 7}, A = Z(SL2(q)) and µ is a
nontrivial irreducible character of A. Since

cd(SL2(q)|λ) = {(q − ε)/2, q − 1, q + 1},
with q ≡ ε (mod 4) and ε ∈ {±1}, we deduce that

cd(G|θ) = {θ(1)(q − ε)/2, (q − 1)θ(1), (q + 1)θ(1)}.
However, we can check that all degrees in cd(G|θ) are even and thus 3 6∈ cd(G|θ).
This contradiction proves the theorem. �
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