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Abstract. Let G be a finite group. We denote by ρ(G) the set of primes which
divide some character degrees of G and by σ(G) the largest number of distinct
primes which divide a single character degree of G. We show that |ρ(G)| ≤ 2σ(G)+1
when G is an almost simple group. For arbitrary finite groups G, we show that
|ρ(G)| ≤ 2σ(G) + 1 provided that σ(G) ≤ 2.

1. Introduction

Throughout this paper, all groups are finite and all characters are complex charac-
ters. The set of all complex irreducible characters of G is denoted by Irr(G) and we
let cd(G) be the set of all complex irreducible character degrees of G. We define ρ(G)
to be the set of primes which divide some character degree of G. For χ ∈ Irr(G), let
π(χ) be the set of all prime divisors of χ(1) and let σ(χ) = |π(χ)|. Moreover, σ(G)
is defined to be the maximum value of σ(χ) when χ runs over the set Irr(G). Hup-
pert’s ρ− σ Conjecture proposed by B. Huppert in [H] states that if G is a solvable
group, then |ρ(G)| ≤ 2σ(G); and if G is an arbitrary group, then |ρ(G)| ≤ 3σ(G).
For solvable groups, this conjecture has been verified by Manz [Man1] and Gluck
[G] when σ(G) = 1 and 2, respectively; and in general, it is proved by Manz and
Wolf [MW] that |ρ(G)| ≤ 3σ(G) + 2. For arbitrary groups, Manz [Man2] showed that
|ρ(G)| = 3 if G is nonsolvable and σ(G) = 1. Recently, it has been proved by Casolo
and Dolfi [CD] that |ρ(G)| ≤ 7σ(G) for any arbitrary groups G. In [MW], Manz and
Wolf proposed that for any group G,

|ρ(G)| ≤ 2σ(G) + 1.

We call this new conjecture the Strengthened Huppert’s ρ−σ conjecture. Obviously,
this new conjecture is stronger than the original one. In this paper, we first improve
the result due to Alvis and Barry in [AB] by proving the following.

Theorem A. Let G be an almost simple group. Then |ρ(G)| ≤ 2σ(G) unless G ∼=
PSL2(2

f ) with f ≥ 2 and |π(2f − 1)| = |π(2f + 1)|. For the exceptions, we have
|ρ(G)| = 2σ(G) + 1.
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This verifies the Strengthened Huppert’s ρ−σ conjecture for almost simple groups.
In the next theorem, we verify this new conjecture for groups G with σ(G) ≤ 2.

Theorem B. Let G be a finite group. If σ(G) ≤ 2, then |ρ(G)| ≤ 2σ(G) + 1.

Notice that Theorem B is also a generalization to [T, Theorem A].

Notation. For a positive integer n, we denote the set of all prime divisors of n by
π(n). If G is a group, then we write π(G) instead of π(|G|) for the set of all prime
divisors of the order of G. If N � G and θ ∈ Irr(N), then the inertia group of θ in
G is denoted by IG(θ). We write Irr(G|θ) for the set of all irreducible constituents of
θG. Moreover, if χ ∈ Irr(G), then Irr(χN) is the set of all irreducible constituents of χ
when restricted to N. Recall that a group G is said to be an almost simple group with
socle S if there exists a nonabelian simple group S such that S �G ≤ Aut(S). The
greatest common divisor of two integers a and b is gcd(a, b). Denote by Φk := Φk(q)
the value of the kth cyclotomic polynomial evaluated at q. Other notation is standard.

2. Proof of Theorem A

If G is an almost simple group, then G has no normal abelian Sylow subgroup and
so by Ito-Michler’s Theorem [Mich, Theorem 5.4], ρ(G) = π(G). This fact will be
used without any further reference.

Lemma 2.1. Let S be a sporadic simple group, the Tits group or an alternating group
of degree at least 7. If G is an almost simple group with socle S, then

|π(G)| = |π(S)| ≤ 2σ(G).

Proof. Observe first that if S is one of the simple groups in the lemma, and G is
any almost simple group with socle S, then π(G) = π(S). Since S � G, we see that
σ(S) ≤ σ(G). Thus it suffices to show that |π(S)| ≤ 2σ(S). By using [Atlas], we can
easily check that |π(S)| ≤ 2σ(S) when S is a sporadic simple group, the Tits group
or an alternating group of degree n with 7 ≤ n ≤ 14. Finally, if S ∼= An with n ≥ 15,
then the result in [BW] yields that |π(S)| = σ(S). This completes the proof. �

For ε = ±, we use the convention that PSLεn(q) is PSLn(q) if ε = + and PSUn(q)
if ε = −. Let q ≥ 2 and n ≥ 3 be integers with (n, q) 6= (6, 2). A prime ` is called
a primitive prime divisor of qn − 1 if ` | qn − 1 but ` - qm − 1 for any m < n. By
Zsigmondy’s Theorem [Z], the primitive prime divisors of qn − 1 always exist. We
denote by `n(q) the smallest primitive prime divisor of qn − 1. In Table 1 which is
taken from [Mal], we give the orders of two maximal tori Ti and the corresponding
two primitive prime divisors `i, for i = 1, 2, of classical groups.



CHARACTER DEGREES 3

Table 1. Two tori for classical groups

G = G(q) |T1| |T2| `1 `2
An (qn+1 − 1)/(q − 1) qn − 1 `n+1(q) `n(q)
2An, (n ≡ 0(4)) (qn+1 + 1)/(q + 1) qn − 1 `2n+2(q) `n(q)
2An, (n ≡ 1(4)) (qn+1 − 1)/(q + 1) qn + 1 `(n+1)/2(q) `2n(q)
2An, (n ≡ 2(4)) (qn+1 + 1)/(q + 1) qn − 1 `2n+2(q) `n/2(q)
2An, (n ≡ 3(4)) (qn+1 − 1)/(q + 1) qn + 1 `n+1(q) `2n(q)
Bn,Cn (n ≥ 3 odd) qn + 1 qn − 1 `2n(q) `n(q)
Bn,Cn (n ≥ 2 even) qn + 1 (qn−1 + 1)(q + 1) `2n(q) `2n−2(q)
Dn, (n ≥ 5 odd) (qn−1 + 1)(q + 1) qn − 1 `2n−2(q) `n(q)
Dn, (n ≥ 4 even) (qn−1 + 1)(q + 1) (qn−1 − 1)(q − 1) `2n−2(q) `n−1(q)
2Dn qn + 1 (qn−1 + 1)(q − 1) `2n(q) `2n−2(q)

Let C be the set consisting of the following simple groups:

PSL2(q), PSL3(q), PSU3(q), PSp4(q) PSL4(2),
PSL6(2), PSL7(2), PSU4(2), PSU4(3), PSU6(2),
Sp4(2)′, Sp6(2), Sp8(2), Ω7(3), Ω+

8 (2),
Ω−8 (2), 3D4(2), G2(2)′, G2(3), G2(4).

Lemma 2.2. Let S be a finite simple group of Lie type in characteristic p which is
not the Tits groups nor PSL2(2

f ) with f ≥ 2. Then |π(S)| ≤ 2σ(S).

Proof. We consider the following cases.

Case 1: S ∼= PSL2(q), where q = pf ≥ 5 is odd.

Since PSL2(5) ∼= PSL2(4), we can assume that q > 5. In this case, all character
degrees of S divide q, q − 1 or q + 1. Observe that

π(S) = {p} ∪ π(q − 1) ∪ π(q + 1), {p} ∩ π(q ± 1) = ∅
and

π(q − 1) ∩ π(q + 1) = {2}.
Hence, we obtain that

|π(S)| = 1 + σ(q + 1) + σ(q − 1)− |π(q − 1) ∩ π(q + 1)|
= σ(q + 1) + σ(q − 1) ≤ 2σ(S).

Case 2: S ∼= PSLε3(q) with q = pf and ε = ±. As PSL3(2) ∼= PSL2(7) and PSU3(2)
is not simple, we can assume that q > 2. The cases when q = 3 or 4 can be checked
directly using [Atlas]. So, we can assume that q ≥ 5. By [SF], S possesses irreducible
characters χi, i = 1, 2, with degree

χ1(1) = (q − ε1)2(q + ε1) and χ2(1) = q(q2 + εq + 1).
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Let d = gcd(3, q − ε1). Then

|S| = 1

d
q3(q2 − 1)(q3 − ε1) =

1

d
q3(q − ε1)2(q + ε1)(q2 + εq + 1)

and so

π(S) = π(χ1) ∪ π(χ2).

Therefore, |π(S)| ≤ 2σ(S) as wanted.

Case 3: S ∼= PSp4(q) with q = pf > 2.

By [E, S], S has two irreducible characters χi, i = 1, 2, with degree Φ2
1Φ

2
2 and

qΦ1Φ4, respectively. Since

|S| = 1

d
q4Φ2

1Φ
2
2Φ4

where d = gcd(2, q − 1), we deduce that

π(S) = π(χ1) ∪ π(χ2),

and thus |π(S)| ≤ 2σ(S).

Case 4: S is one of the remaining simple groups in the list C.
Using [Atlas], it is routine to check that |π(S)| ≤ 2σ(S) in all these cases.

Case 5: S is not in the list C.
We consider the following setup. Let G be a simple simply connected algebraic

group defined over a field of size q in characteristic p and let F be a Frobenius map on
G such that S ∼= L/Z, where L := G F and Z := Z(L). Let the pair (G ∗, F ∗) be dual
to (G , F ) and let L∗ := G ∗F

∗
. By Lusztig theory, the irreducible characters of G F

are partitioned into rational series E (G F , (s)) which are indexed by (G ∗F
∗
)-conjugacy

classes (s) of semisimple elements s ∈ G ∗F
∗
. Furthermore, if gcd(|s|, |Z|) = 1, then

every χ ∈ E (G F , (si)) is trivial at Z and thus χ ∈ Irr(S) = Irr(L/Z). (See [MT, p.
349]). Notice also that χ(1) is divisible by |L∗ : CL∗(s)|p′ .

For simple classical groups of Lie type, the restriction on S guarantees that both
primitive prime divisors `i in Table 1 exist. Let si ∈ G ∗F

∗
with |si| = `i, i = 1, 2. Then

CL∗(si) = Ti for i = 1, 2, where Ti are maximal tori of L∗. Similarly, for each simple
exceptional group of Lie type S, by [MT, Lemma 2.3] one can find two semisimple
elements si ∈ G ∗F

∗
with |si| = `i, i = 1, 2. In both cases, we have that (`i, |Z|) = 1

for i = 1, 2 and if a := gcd(|CL∗(s1)|, |CL∗(s2)|), then either a = 1 or if a prime r
divides a, then r also divides |L∗ : CL∗(si)|p′ for some i. Let χi ∈ E (G F , (si)), i = 1, 2
such that χi(1) = |L∗ : CL∗(si)|p′ . Then χi ∈ Irr(S) for i = 1, 2 and

π(S) = {p} ∪ π(χ1) ∪ π(χ2).
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Notice that p is relatively prime to both χi(1) for i = 1, 2. So

|π(S)| = |{p} ∪ π(χ1) ∪ π(χ2)|
= 1 + |π(χ1)|+ |π(χ2)| − |π(χ1) ∩ π(χ2)|
= σ(χ1) + σ(χ2)− (|π(χ1) ∩ π(χ2)| − 1)

≤ 2σ(S)− (|π(χ1) ∩ π(χ2)| − 1).

If we can show that |π(χ1) ∩ π(χ2)| ≥ 1, then clearly |π(S)| ≤ 2σ(S) and we
are done. By way of contradiction, assume that π(χ1) ∩ π(χ2) is empty. Then
gcd(χ1(1), χ2(1)) = 1 and so

gcd(|L∗ : CL∗(s1)|p′ , |L∗ : CL∗(s2)|p′) = 1.

It follows that |L∗|p′ must divide |CL∗(s1)|p′ · |CL∗(s2)|p′ . However, we can check by
using [MT, Lemma 2.3] and Table 1 that this is not the case. The proof is now
complete. �

We now prove Theorem A which we restate here.

Theorem 2.3. Let G be an almost simple group. Then |ρ(G)| ≤ 2σ(G) unless
G ∼= PSL2(2

f ) with |π(2f − 1)| = |π(2f + 1)|. For the exceptions, we have |ρ(G)| =
2σ(G) + 1.

Proof. Let G be an almost simple group with simple socle S. Since S �G, we obtain
that σ(S) ≤ σ(G).

Case 1: S ∼= PSL2(q) with q = 2f ≥ 4.

It is well know that |S| = q(q2 − 1), gcd(2f − 1, 2f + 1) = 1 and

cd(S) = {1, q − 1, q, q + 1}.

If |π(q − 1)| = |π(q + 1)|, then

π(S) = {2} ∪ π(q − 1) ∪ π(q + 1)

and thus |π(S)| = 2σ(S)+1 as σ(S) = |π(2f±1)|. Assume that |π(q−1)| 6= |π(q+1)|.
Then |π(2f + δ)| > |π(2f − δ)| for some δ ∈ {±1}. Hence, σ(S) = |π(2f + δ)| and thus

|π(S)| = |{2} ∪ π(2f − δ) ∪ π(2f + δ)| = 1 + |π(2f − δ)|+ |π(2f + δ)|.

Since |π(2f + δ)| ≥ |π(2f − δ)|+ 1, we obtain that

|ρ(G)| ≤ 2|π(2f + δ)| ≤ 2σ(G).

Thus the result holds when G = S. Assume now that |G : S| is nontrivial. We
know that Aut(S) = S · 〈ϕ〉, where ϕ is a field automorphism of S of order f. Thus
G = S · 〈ψ〉, with ψ ∈ 〈ϕ〉. If f = 2, then G ∼= A5 · 2 and obviously |π(G)| = 2σ(G).
Hence we can assume that f > 2. Clearly, if f ≡ 2 (mod 4) and G = S · 〈ϕ〉, then
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|G : S| > 2. So by [W, Theorem A], G has two irreducible characters χi ∈ Irr(G),
i = 1, 2, with χ1(1) = |G : S|(q − 1) and χ2(1) = |G : S|(q + 1). Obviously

π(G) = {2} ∪ π(χ1) ∪ π(χ2)

and

π(χ1) ∩ π(χ2) = π(|G : S|) 6= ∅.
If |G : S| is even, then

|ρ(G)| = |π(χ1) ∪ π(χ2)| ≤ |π(χ1)|+ |π(χ2)| ≤ 2σ(G).

If |G : S| is odd, then

|ρ(G)| = |{2} ∪ π(χ1) ∪ π(χ2)|
= 1 + |π(χ1)|+ |π(χ2)| − |π(χ1) ∩ π(χ2)|
= σ(χ1) + σ(χ2)− (|π(|G : S|)| − 1)
≤ σ(χ1) + σ(χ2)
≤ 2σ(G).

Case 2: S is a sporadic simple group, the Tits group or an alternating group of
degree at least 7.

By Lemma 2.1, we obtain that |ρ(G)| ≤ 2σ(G).

Case 3: S is a finite simple group of Lie type in characteristic p and S is not the
Tits groups nor PSL2(2

f ) with f ≥ 2.

Subcase 3a: π(G) = π(S).

By Lemma 2.2, we have that |π(S)| ≤ 2σ(S). Thus

|ρ(G)| = |π(S)| ≤ 2σ(S) ≤ 2σ(G).

Subcase 3b: π := π(G)− π(S) is nonempty.

Let A be the subgroup of the group of coprime outer automorphisms of S induced
by the action of G on S. By [MT, Lemma 2.10], A is cyclic and central in Out(S).
Moreover, A is generated by a fixed field automorphism γ ∈ Out(S). It follows that
the group S · A is normal in G and π(S · A) = π(G). Thus we can assume that
G = S · A with A = 〈γ〉 and γ a field automorphism of S. Furthermore, π(γ) = π.
Replacing A by a normal subgroup if necessary, we can also assume that |A| = |γ| is
the product of all distinct primes in π.

As in the proof of Lemma 2.2, let G be a simple simply connected algebraic group
defined over a field of size q = pf in characteristic p and let F be a Frobenius map of
G such that S ∼= L/Z, where L := G F and Z := Z(L). Let the pair (G ∗, F ∗) be dual
to (G , F ) and let L∗ := G ∗F

∗
. As π ⊆ π(f), where π = π(G) − π(S), it is easy to

check that both the primitive prime divisors in [MT, Lemmas 2.3, 2.4] exist and thus
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one can find two semisimple elements si ∈ G ∗F
∗

with |si| = `i such that (`i, |Z|) = 1
for i = 1, 2. Arguing as in the proof of Lemma 2.2, we obtain that

π(S) = {p} ∪ π(χ1) ∪ π(χ2),

where χi ∈ E (G F , (si)) such that χi(1) = |L∗ : CL∗(si)|p′ and χi can be considered
as characters of S, for i = 1, 2.

We next claim that the inertia group for both χi, i = 1, 2 in G is exactly S.
It suffices to show that no field automorphism of S of prime order can fix χi for
i = 1, 2. Let τ be a field automorphism of S of prime order s. We can extend τ to
an automorphism of G F and G ∗F

∗
which we also denote by τ. Notice that CG ∗F

∗ (τ)

is a finite group of Lie type of the same type as that of G ∗F
∗

but defined over
a field of size q1/s. Now it is straight forward to check that both `i, i = 1, 2, are
relatively prime to |CG ∗F

∗ (τ)|. Hence G ∗F
∗
-conjugacy classes (si) of si in G ∗F

∗
are

not τ -invariant for i = 1, 2. (See [MT, Proposition 2.6].) Then τ(si) and si are not
G ∗F

∗
-conjugate for i = 1, 2, and thus χi ∈ E (G F , (si)), i = 1, 2 are not τ -invariant.

(See [MT, Theorem 2.7].) Therefore, we obtain that χGi ∈ Irr(G) for i = 1, 2, hence
χGi (1) = |G : S|χi(1) ∈ cd(G). Since

π(S) = {p} ∪ π(χ1) ∪ π(χ2) and π(G) = π(S) ∪ π(|G : S|),
we obtain that

π(G) = {p} ∪ π(|G : S|χ1(1)) ∪ π(|G : S|χ2(1)) = {p} ∪ π(χG1 ) ∪ π(χG2 ).

Moreover, p - |G : S|χi(1) = χGi (1) for i = 1, 2, and

|π(χG1 ) ∩ π(χG2 )| ≥ 1.

Therefore,

|π(G)| = 1 + σ(χG1 ) + σ(χG2 )− |π(χG1 ) ∩ π(χG2 )|
≤ 2σ(G)− (|π(χG1 ) ∩ π(χG2 )| − 1)
≤ 2σ(G).

The proof is now complete. �

The next results will be needed in the proof of Theorem B.

Lemma 2.4. Let S be a nonabelian simple group. If σ(S) ≤ 2, then S is one of the
following groups.

(1) S ∼= PSL2(2
f ) with |π(2f ± 1)| ≤ 2 and so |π(S)| ≤ 5.

(2) S ∼= PSL2(q) with q > 5 odd and |π(q ± 1)| ≤ 2 and so |π(S)| ≤ 4.
(3) S ∈ {M11,A7,

2B2(8), 2B2(32),PSL±3 (3),PSL±3 (4),PSL3(8)} and |π(S)| = 4.

Proof. As S is a nonabelian simple group, we have that |π(S)| ≥ 3. If S ∼= PSL2(q)
with q ≥ 4, then the lemma follows easily as the character degree set of S is known.
Now assume that S 6∼= PSL2(q). Then Lemmas 2.2 and 2.1 imply that |π(S)| ≤ 2σ(S).
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So, 3 ≤ |π(S)| ≤ 4. By checking the list of nonabelian simple groups with at most
four prime divisors in [HL], we deduce that only those nonabelian simple groups
appearing in (3) above satisfy the hypotheses of the lemma. �

Lemma 2.5. Let G be an almost simple group with simple socle S. If σ(G) ≤ 2, then
π(G) = π(S), where S is one of the simple groups in Lemma 2.4.

Proof. Since σ(S) ≤ σ(G) ≤ 2, we deduce that S is isomorphic to one of the simple
groups in the conclusion of Lemma 2.4. If |π(S)| = 3, then S is one of the simple
groups in [HL, Table 1] and we can check that π(G) = π(S) in these cases. Thus we
assume that |π(S)| ≥ 4. Now if G = S, then we have nothing to prove. So, we assume
that G 6= S. In particular, G 6∼= PSL2(2

f ) with f ≥ 2. Then |π(G)| ≤ 2σ(G) ≤ 4
by Theorem A and thus 4 ≤ |π(S)| ≤ |π(G)| ≤ 4, which forces |π(S)| = |π(G)| and
hence π(G) = π(S) as wanted. �

3. Proof of Theorem B

The following two lemmas are obvious.

Lemma 3.1. Let A and B be groups such that |ρ(A)| ≥ 3 and |ρ(B)| ≥ 3. If

σ(A×B) ≤ 2,

then σ(A) = 1 = σ(B).

Lemma 3.2. Let N be a normal subgroup of a group G. If ρ(G/N) = π(G/N), then

ρ(G)− ρ(G/N) ⊆ ρ(N).

Recall that the solvable radical of a group G is the largest normal solvable subgroup
of G.

Lemma 3.3. Let G be a nonsolvable group and let N be the solvable radical of G.
Suppose that σ(G) ≤ 2 and |ρ(G)| ≥ 5. Then G/N is an almost simple group.

Proof. We first claim that if M/N is a chief factor of G, then M/N is a nonabelian
simple group.

Let M be a normal subgroup of G such that M/N is a chief factor of G. Since N
is the largest normal solvable subgroup of G, we deduce that M/N is nonsolvable so
that M/N ∼= Sk for some integer k ≥ 1 and some nonabelian simple group S. Let
C/N = CG/N(M/N). Then G/C embeds into Aut(Sk).

Assume first that k ≥ 3. Since |ρ(S)| = |π(S)| ≥ 3, there exist three distinct prime
divisors ri, 1 ≤ i ≤ 3, and three characters ψi ∈ Irr(S) for 1 ≤ i ≤ 3 with ri | ψi(1).
Let

ϕ = ψ1 × ψ2 × ψ3 × 1× · · · × 1 ∈ Irr(Sk).

Then σ(ϕ) ≥ 3, which is a contradiction since

σ(Sk) = σ(M/N) ≤ σ(M) ≤ σ(G) ≤ 2.
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Thus k ≤ 2.
Now assume that k = 2. Let B/C = (G/C) ∩ Aut(S)2. Then G/B is a nontrivial

subgroup of the symmetric group of degree 2 and thus |G : B| = 2. Since S2 ∼=
MC/C � B/C � G/C and σ(G) ≤ 2, we deduce that σ(S2) ≤ 2 and thus σ(S) = 1
by Lemma 3.1. By [Man2, Satz 8], we know that S is isomorphic to either PSL2(4)
or PSL2(8). In both cases, we obtain that π(Aut(S)) = π(S), hence π(B/C) =
π(S). Moreover, as |G : B| = 2, we deduce that π(G/C) = π(S). As G/C has
no nontrivial normal abelian Sylow subgroups, Ito-Michler’s Theorem yields that
ρ(G/C) = π(G/C) = π(S). Since |π(G/C)| = |π(S)| = 3 and |ρ(G)| ≥ 5, there exists
r ∈ ρ(G) − π(G/C). Then r > 2 and r ∈ ρ(C) by Lemma 3.2. Let θ ∈ Irr(C) such
that r | θ(1). Let L be a normal subgroup of MC such that L/C ∼= S. Notice that
MC/C ∼= S2. By applying [T, Lemma 4.2], θ extends to θ0 ∈ Irr(L). By Gallagher’s
Theorem [I, Corollary 6.17], θ0µ ∈ Irr(L) for all µ ∈ Irr(L/C). Let µ0 ∈ Irr(L/C)
with 2 | µ0(1) and let ϕ = θ0µ0 ∈ Irr(L). Then π(ϕ(1)) = {2, r} with r > 2.
As MC/L ∼= S, we can apply [T, Lemma 4.2] again to obtain that ϕ extends to
ϕ0 ∈ Irr(MC) and then by applying Gallagher’s Theorem, ϕ0µ ∈ Irr(MC) for all
µ ∈ Irr(MC/L). Clearly, MC/L ∼= S has an irreducible character τ ∈ Irr(MC/L)
with s | τ(1), where s 6∈ {2, r}. We now have that ϕ0τ ∈ Irr(MC). But then this is
a contradiction as π(ϕ0(1)τ(1)) = {2, s, r}. This contradiction shows that k = 1 as
wanted.

Let M/N be a chief factor of G and let C/N = CG/N(M/N). We claim that C = N
and thus G/N is an almost simple group as required. By the claim above, we know
that M/N ∼= S for some nonabelian simple group S. Hence, G/C is an almost simple
group with socle MC/C ∼= M/N. Suppose by contradiction that C 6= N. Now let L/N
be a chief factor of G with N ≤ L ≤ C. By the claim above, we deduce that L/N is
isomorphic to some nonabelian simple group. In particular, |ρ(C/N)| ≥ |π(L/N)| ≥
3. We have that MC/N ∼= C/N ×M/N. Since σ(MC/N) ≤ σ(MC) ≤ σ(G) ≤ 2, we
deduce that σ(C/N ×M/N) ≤ 2 and thus by Lemma 3.1, σ(C/N) = 1 = σ(M/N).
By [Man2], we have C/N ∼= T × A, where A is abelian, T is a nonabelian simple
group and S, T ∈ {PSL2(4),PSL2(8)}. Since C�G and the solvable radical W of C is
characteristic in C, we obtain that W�G and thus W ≤ N as N is the largest normal
solvable subgroup of G. Clearly, N ≤ W as N is also a solvable normal subgroup
of C, so W = N. Therefore, C/N has no nontrivial normal abelian subgroup. Thus
A = 1 and hence C/N ∼= T. Since π(G/C) = π(M/N) and G/N has no normal
abelian Sylow subgroup, we obtain that

ρ(G/N) = π(G/N) = π(C/N) ∪ π(M/N) = π(S) ∪ π(T ).

It follows that

|ρ(G/N)| = |π(S) ∪ π(T )| ≤ |π(PSL2(4)) ∪ π(PSL2(8))| = 4.
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Hence, ρ(G)−ρ(G/N) is nonempty. Now let r ∈ ρ(G)−ρ(G/N). As {2, 3} ⊆ ρ(G/N),
we obtain that r 6∈ {2, 3}. By Lemma 3.2, r ∈ ρ(N) and hence r | θ(1) for some
θ ∈ Irr(N). Since σ(M) ≤ σ(G) ≤ 2 and M/N ∼= S, by [T, Lemma 4.2] we deduce
that θ extends to θ0 ∈ Irr(M). Now let λ ∈ Irr(M/N) with 2 | λ(1). By Gallagher’s
Theorem, ϕ = θ0λ ∈ Irr(M) with π(ϕ(1)) = {2, r}. Notice that r ≥ 5 since r 6∈
{2, 3}. Now let K = MC � G. Then K/M ∼= T and σ(K) ≤ 2. Applying the same
argument as above, we deduce that ϕ extends to ϕ0 ∈ Irr(K). Clearly, K/M ∼= T
has an irreducible character µ with 3 | µ(1) and thus by Gallagher’s Theorem again,
ψ = ϕ0µ ∈ Irr(K) and obviously σ(ψ) ≥ 3, which is a contradiction. �

We are now ready to prove Theorem B which we state here.

Theorem 3.4. Let G be a group. If σ(G) ≤ 2, then |ρ(G)| ≤ 2σ(G) + 1.

Proof. LetG be a counterexample to the theorem with minimal order. Then σ(G) ≤ 2
but |ρ(G)| > 2σ(G) + 1. If G is solvable or G is nonsolvable with σ(G) = 1, then

|ρ(G)| ≤ 2σ(G) + 1

by [Man1, G, Man2], which is a contradiction. Thus we can assume that G is non-
solvable, σ(G) = 2 and |ρ(G)| ≥ 6. Let N be the solvable radical of G. By Lemma 3.3,
G/N is an almost simple group with simple socle M/N. Since σ(M/N) ≤ σ(G/N) ≤
σ(G) = 2, we deduce from Lemmas 2.5 and 2.4 that

|π(G/N)| = |π(M/N)| ≤ 5.

As |ρ(G)| ≥ 6, we have that ρ(G)−ρ(G/N) is nonempty and let r ∈ ρ(G)−ρ(G/N).
By Lemma 3.2, r | θ(1) for some θ ∈ Irr(N). Since σ(M) ≤ 2, by applying [T,
Lemma 4.2], we deduce that θ extends to θ0 ∈ Irr(M). Using Gallagher’s Theorem,
we must have that σ(M/N) = 1 and hence M/N ∼= PSL2(4) or PSL2(8). Thus
|π(G/N)| = |π(M/N)| = 3, hence |τ | ≥ 3, with τ = ρ(G)− ρ(G/N). By Lemma 3.2,
we have that τ ⊆ ρ(N) and since N is solvable, by applying Pálfy’s Condition
[P, Theorem], there exists ψ ∈ Irr(N) such that ψ(1) is divisible by two distinct
primes in τ. Now by applying [T, Lemma 4.2] again, we obtain a contradiction. This
contradiction shows that |ρ(G)| ≤ 2σ(G) + 1 as wanted. �
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