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Abstract. Let G be a finite group. Let X1(G) be the first column of the ordi-

nary character table of G. In this paper, we will show that if X1(G) = X1(Sn),
then G ∼= Sn. As a consequence, we show that Sn is uniquely determined by

the structure of the complex group algebra CSn.

1. Introduction and Notation

All groups considered are finite and all characters are complex characters. Let G
be a group and let Irr(G) = {χ1, χ2, · · · , χk} be the set of all irreducible characters
of G. Put ni = χi(1). We say that (n1, n2, · · · , nk) is the degree pattern of G. Let
cd(G) = {χ(1) | χ ∈ Irr(G)} be the set of all irreducible character degrees of G.
Following [2], let X1(G) be the first column of the ordinary character table of G.
By a suitable re-ordering of the rows in the character table of G, we can see that
X1(G) coincides with the degree pattern (n1, n2, · · · , nk) of G. We also consider
X1(G) as a multiset consisting of character degrees of G counting multiplicities.
Since |G| =

∑
χ∈Irr(G) χ(1)2, the order of G is known given X1(G). There are

examples showing that non-isomorphic groups may have the same character table
and so the first column of their character tables coincide. Using the classification
of finite simple groups, it is easy to see that non-abelian simple groups are uniquely
determined by their character table. It was shown by Nagao [14] that the symmetric
groups Sn are also uniquely determined by their character tables. In [16], we know
that the alternating group An of degree at least 5, and the sporadic simple groups
are uniquely determined by the first column of their character tables. In this paper,
we will prove a similar result for the symmetric groups.

Theorem 1.1. Let G be a finite group. If X1(G) = X1(Sn), then G ∼= Sn.

This gives a positive answer to [2, Question 126]. Let C be the complex number
field and let G be a group. Denote by CG the group algebra of G over C. Let
Gi, i = 1, 2, be groups. By Molien’s Theorem ([2, Theorem 2.13]) we know that
CG1

∼= CG2 if and only if X1(G1) = X1(G2). Therefore, knowing the first column
of the character table of a group G is equivalent to knowing the structure of the
group algebra CG. It is known that CG allows us to recognize the Frobenius groups
or the p-nilpotent groups ([2, Corollaries 10.11, and 10.27]). Now Theorem 1.1
yields.

Corollary 1.2. Let G be a group. If CG ∼= CSn, then G ∼= Sn.
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We should mention that Brauer’s Problem 1 (see [3]) which asks the following:
What are the possible degree patterns of finite groups? Little is known about this
problem. Now Corollary 1.2 says that there is exactly one isomorphism type of the
group algebra with a degree pattern as that of the symmetric groups.

We now outline our argument for the proof of Theorem 1.1. Assume that
X1(G) = X1(Sn). We first observe that |G : G′| = 2, |G| = n!, k(G) = k(Sn)
and cd(G) = cd(Sn), where k(G) denotes the number of conjugacy classes of G.
The result is trivial when n ≤ 4. Hence we will assume that n ≥ 5. Next we will show
that G′ is perfect, that is G′ = G′′, by applying [8, Lemma 12.3]. Choose M ≤ G′

be a normal subgroup of G so that G′/M is a chief factor of G. As |G : G′| = 2
and G′/M is non-abelian, we deduce that G′/M ∼= Sk, where S is a non-abelian
simple group and k is at most 2. We proceed to show that G′/M must be a simple
group that is k = 1. This is done by applying Theorem 3.3. We now deduce that
either G/M is an almost simple group with socle G′/M or G/M ∼= G′/M × Z2.
We now apply Theorem 3.1 which asserts that if H is an almost simple group and
cd(H) ⊆ cd(Sn), n ≥ 5, then the socle of H must be isomorphic to An, to show that
G′/M ∼= An. Assume that n 6= 6. By comparing the orders, G ∼= Sn or G ∼= An×Z2.
Finally, using the fact that G and Sn have the same number of irreducible charac-
ters, we can eliminate the latter case. Thus G must be isomorphic to Sn. In the
exceptional case, we have |Out(A6)| = 4. In this case, G is one of the following
groups: A6×Z2, PGL2(9) ∼= A6.22,M10

∼= A6.23 or S6. Using [5], we conclude that
G ∼= S6. We remark that this argument is based on the Huppert’s method given
in [7]. This method is used to verify the Huppert Conjecture which states that
non-abelian simple groups are determined by their sets of character degrees (see
[7, 17]).

If cd(G) = {s0, s1, · · · , st}, where 1 = s0 < s1 < · · · < st, then we define
di(G) = si for all 1 ≤ i ≤ t. Then di(G) is the ith smallest degree of the non-trivial
character degrees of G. If n is an integer then we denote by π(n) the set of all prime
divisors of n. If G is a group, we will write π(G) instead of π(|G|) to denote the
set of all prime divisors of the order of G. Let p(G) = max(π(G)) be the largest
prime divisor of the order of G and let ρ(G) = ∪χ∈Irr(G)π(χ(1)) be the set of all
primes which divide some irreducible character degrees of G. Finally, if N EG and
θ ∈ Irr(N), then the inertia group of θ in G is denoted by IG(θ). Other notation is
standard.

2. Preliminaries

Let n be a positive integer. We call λ = (λ1, λ2, . . . , λr) a partition of n, written
λ ` n, provided λi, i = 1, 2, . . . , r are integers, with λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and∑r
i=1 λi = n. We collect the same parts together and write λ = (`a11 , `

a2
2 , · · · , `

ak
k ),

with `i > `i+1 > 0 for i = 1, · · · , k − 1; ai 6= 0; and
∑k
i=1 ai`i = n. It is well known

that the irreducible complex characters of the symmetric group Sn are parametrized
by partitions of n. Denote by χλ the irreducible character of Sn corresponding
to partition λ. The irreducible characters of the alternating group An are then
obtained by restricting χλ to An. In fact, χλ is still irreducible upon restriction to
the alternating group An if and only if λ is not self-conjugate. Otherwise, χλ splits
into two irreducible characters of An having the same degree. The following result
on the minimal character degrees of symmetric groups is due to Rasala [15].

Lemma 2.1. ([15, Result 3]). Let λ be a partition of n.
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(a) If n ≥ 15, then the first 6 nontrivial minimal character degrees of Sn are:
(1) d1(Sn) = n− 1 and λ ∈ {(n− 1, 1), (2, 1n−2)};
(2) d2(Sn) = 1

2n(n− 3) and λ ∈ {(n− 2, 2), (22, 1n−4)};
(3) d3(Sn) = d2(Sn) + 1 = 1

2 (n− 1)(n− 2) and λ ∈ {(n− 2, 12), (3, 1n−3)};
(4) d4(Sn) = 1

6n(n− 1)(n− 5) and λ ∈ {(n− 3, 3), (23, 1n−6)};
(5) d5(Sn) = 1

6 (n− 1)(n− 2)(n− 3) and λ ∈ {(n− 3, 13), (4, 1n−4)};
(6) d6(Sn) = 1

3n(n− 2)(n− 4) and λ ∈ {(n− 3, 2, 1), (3, 2, 1n−5)};
(b) If n ≥ 22, then the next five smallest character degrees are:
(7) d7(Sn) = n(n− 1)(n− 2)(n− 7)/24 and λ ∈ {(n− 4, 4), (24, 1n−8)};
(8) d8(Sn) = (n− 1)(n− 2)(n− 3)(n− 4)/24 and λ ∈ {(n− 4, 14), (5, 1n−5)};
(9) d9(Sn) = n(n− 1)(n− 4)(n− 5)/12 and λ ∈ {(n− 4, 22), (32, 1n−6)};
(10) d10(Sn) = n(n− 1)(n− 3)(n− 6)/8 and λ ∈ {(n− 4, 3, 1), (3, 22, 1n−7)};
(11) d11(Sn) = n(n− 2)(n− 3)(n− 5)/8 and λ ∈ {(n− 4, 2, 12), (4, 2, 1n−6)};

Assume n ≥ 5. Using [5, 6] and Lemma 2.1, we can see that d1(Sn) = n − 1
and d2(Sn) = n(n − 3)/2 if n 6= 8 while d2(S8) = 14. Similarly, if n ≥ 6, then
d1(An) = n− 1 while d1(A5) = 3 (see [16]). The following is well-known.

Lemma 2.2. (Tschebyschef). If m ≥ 15, then there is at least one prime p with
m/2 < p ≤ m.

Proof. If m ≥ 17 then the result follows from [11, Proposition 5.1]. For 15 ≤ m ≤
16, the lemma is obvious. �

The following results on the classification of prime power character degrees of
symmetric groups will be used frequently.

Lemma 2.3. ([1, Theorem 5.1]). Suppose that Sn possesses a non-trivial irreducible
character χ with χ(1) = pd, where p is a prime. Then one of the following holds:

(1) n = pd + 1, and χ(1) = pd;
(2) n = 4 and χ(1) = 2;
(3) n = 5 and χ(1) = 5;
(4) n = 6 and χ(1) ∈ {32, 24};
(5) n = 8 and χ(1) = 26;
(5) n = 9 and χ(1) = 33;

We refer to [4, 13.8, 13.9] for the classification of unipotent characters and the
notion of symbols.

Lemma 2.4. Let S be a simple group of Lie type in characteristic p defined over
a field of size q. Assume that S 6= L2(q), 2F4(2)′. Then there exist two irreducible
characters χi, i = 1, 2, of S such that both χi extend to Aut(S) with 1 < χ1(1) <
χ2(1) and χ2(1) = |S|p. In particular, if G is an almost simple group with socle S,
where S 6= L2(q), 2F4(2)′, then |S|p > d1(G).

Proof. By the results of Lusztig [9], any unipotent character θ of S has an extension

θ̃ to the group G1 of inner-diagonal automorphisms of S such that θ and θ̃ have the
same inertia group in Aut(S) (see [10, Proposition 2.1]). Moreover, the unipotent
characters of G1 remain irreducible upon restriction to S, and these restrictions are
all the unipotent characters of S. By [10, Theorem 2.4], all unipotent characters of
S extend to their inertia groups in Aut(S). By results of Lusztig, the inertia group
of a unipotent character of S is exactly Aut(S) except for several cases explicitly
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listed in [10, Theorem 2.5]. Thus we can choose χ2 to be the Steinberg character
of S and χ1 to be any unipotent character of S such that χ1 does not appear in
[10, Theorem 2.5] and 1 < χ1(1) < χ2(1) = |S|p.

Assume S is of type An−1 with n ≥ 3. We have G1 = (An−1)ad(q) = PGLn(q).
By [4, 13.8], the unipotent characters of G1 are parametrized by partitions of n.
Let α = (1, n− 1). Then the degree of the unipotent character χα corresponding to
α is given by χα(1) = (qn− q)/(q− 1). Since StS(1) = |S|p = qn(n−1)/2, and n ≥ 3,
we have StS(1) > χα(1) > 1.

Assume S is of type 2An−1, where n ≥ 3. Then G1 = (2An−1)ad(q
2) = PUn(q).

By [4, 13.8], the unipotent characters of G1 are again parametrized by partitions of
n. Let α = (1, n− 1). Then the degree of the unipotent character χα corresponding
to α is given by χα(1) = (qn + (−1)nq)/(q + 1). Since StS(1) = |S|p = qn(n−1)/2,
and n ≥ 3, we have StS(1) > χα(1) > 1.

Assume next that S is of type Bn, or Cn where n ≥ 2 and S 6= S4(2). Then
G1 = (Bn)ad(q) = SO2n+1(q) or G1 = (Cn)ad(q) = PCSp2n(q). By [4, 13.8], G1

has a unipotent characters χα labeled by the symbol

α =

(
0 1 n
−

)
with χα(1) = (qn − 1)(qn − q)/(2(q + 1)). Since |S|p = qn

2

and (n, q) 6= (2, 2),
we see that |S|p > χα(1) > 1.

Assume S is of type Dn(q), n ≥ 4. Then G1 = (Dn)ad(q) = P (CO2n(q)0). By [4,
13.8], G1 has a unipotent character χα labeled by the symbol

α =

(
n− 1

1

)
with χα(1) = (qn − 1)(qn−1 + q)/(q2 − 1). Since |S|p = qn(n−1), we see that |S|p >
χα(1) > 1.

Assume S is of type 2Dn(q2), n ≥ 4. Then G1 = (2Dn)ad(q
2) = P (CO−2n(q)0)

and G1 has a unipotent character χα labeled by the symbol

α =

(
1 n− 1
−

)
with χα(1) = (qn + 1)(qn−1 − q)/(q2 − 1). Since |S|p = qn(n−1), |S|p > χα(1) > 1.

For the simple groups of exceptional type, we will use the explicit list of unipotent
characters in [4, 13.9].

Assume S is of type G2(q). Then S has a unipotent character labeled by θ2,1
with degree qΦ2

2Φ3/6. As G2(2) ∼= U3(3).2 is not simple, we can assume that q ≥ 3.
Since |S|p = q6, we have qΦ2

2Φ3/6 < q6 so that 1 < θ2,1(1) < |S|p.
Assume S is of type 3D4(q3). Then S has a unipotent character labeled by θ1,3′

with degree qΦ12. Since |S|p = q12, we have 1 < θ1,3′(1) < |S|p.
Assume S is of type F4(q). Then S has a unipotent character labeled by θ9,2

with degree q2Φ2
3Φ2

6Φ12. Since |S|p = q24, we have 1 < θ9,2(1) < |S|p.
Assume S is of type E6(q). Then S has a unipotent character labeled by θ6,1

with degree qΦ8Φ9. Since |S|p = q36, we have 1 < θ6,1(1) < |S|p.
Assume S is of type 2E6(q2). Then S has a unipotent character labeled by θ2,4′

with degree qΦ8Φ18. Since |S|p = q36, we have 1 < θ2,4′(1) < |S|p.
Assume S is of type E7(q). Then S has a unipotent character labeled by θ7,1

with degree qΦ7Φ12Φ14. Since |S|p = q63, we have 1 < θ7,1(1) < |S|p.
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Assume S is of type E8(q). Then S has a unipotent character labeled by θ8,1
with degree qΦ2

4Φ8Φ12Φ20Φ24. Since |S|p = q120, we have 1 < θ8,1(1) < |S|p.
Assume S is of type 2B2(q2), where q2 = 22m+1 and m ≥ 1. Then S has a

unipotent character labeled by 2B2[a] with degree qΦ1Φ2/
√

2. Since |S|p = q4, we
have 1 < 2B2[a](1) < |S|p.

Assume S is of type 2G2(q2), where q2 = 32m+1 and m ≥ 1. Then S has a

unipotent character θ with degree qΦ1Φ2Φ4/
√

3. Since |S|p = q6, we have 1 <
θ(1) < |S|p.

Assume S is of type 2F4(q2), where q2 = 22m+1 and m ≥ 1. Then S has a

unipotent character labeled by 2B2[a] with degree qΦ1Φ2Φ2
4Φ6/

√
2. Since |S|p =

q24, we have 1 < 2B2[a](1) < |S|p. This finishes the proof of the first assertion.
Now assume G is an almost simple group with socle S, where S 6= L2(q), 2F4(2)′.

Let χi ∈ Irr(S), i = 1, 2, be irreducible characters of S obtained above. As both
χi extend to Aut(S) and S E G ≤ Aut(S), we deduce that each χi extends to
ψi ∈ Irr(G) with ψi(1) = χi(1) for i = 1, 2. Thus ψ2(1) = |S|p > ψ1(1) = χ1(1) > 1
so that |S|p > d1(G) as required. The proof is now complete. �

Lemma 2.5. Let G be an almost simple group with socle S = L2(q), where q =
pf ≥ 7. If p 6= 3, then G contains an irreducible character of degree q + δ where
q ≡ δ (mod 3). If p = 3, then G contains an irreducible character of degree (q+ε)/2
or q + ε, where q ≡ ε (mod 4).

Proof. Assume first that p 6= 3. It follows from the proof of [13, Proposition 3.7]
that the irreducible character of S corresponding to a semisimple element of order
3 in the dual group SL2(q), of degree q + δ, where q ≡ δ (mod 3), is extendible to
Aut(S), and hence G contains an irreducible character of degree q + δ as required.
Note that this result fails for L2(3f ). Now we assume that q = 3f . Observe that
L2(q) always contains irreducible characters χa, χb of degree q − 1 and q + 1, re-
spectively, which are extendible to PGL2(q). Thus if L2(q)EG ≤ PGL2(q) then G
possesses characters of degree q±1. Now assume that G 6≤ PGL2(q). Recall that the
only outer automorphisms of L2(q) are the diagonal automorphisms and the field
automorphisms. It is well-known that S contains two irreducible characters χ± of
degree (q + ε)/2, where q ≡ ε (mod 4). Now the diagonal automorphisms of S fuse
these two irreducible characters while the field automorphisms fix those two. Let
θ ∈ {χ+, χ−}. Then θ ∈ Irr(S) and IAut(S)(θ) = PΓL2(q). Thus if SEG ≤ PΓL2(q),
then θ is G-invariant and so θ extends to G as G/S is cyclic. Hence G has an irre-
ducible character of degree (q + ε)/2. Finally, assume PGL2(q)EG ≤ Aut(L2(q)).
Then the irreducible character µ of PGL2(q) lying over θ is of degree q+ ε. We see
that µ is G-invariant and hence it extends to G, as G/PGL2(q) is cyclic. Therefore
G contains an irreducible character of degree q+ ε. The proof is now complete. �

Corollary 2.6. If G is an almost simple group then ρ(G) = π(G).

Proof. Observe first that for any χ ∈ Irr(G), we have χ(1) divides |G| by [8, The-
orem 3.11]. Hence ρ(G) ⊆ π(G). As G is almost simple, it has no normal abelian
Sylow p-subgroup, so that by the Ito-Michler Theorem [12], every prime divisor of
G must divide χ(1) for some χ ∈ Irr(G), and thus π(G) ⊆ ρ(G). Hence ρ(G) = π(G)
as required. �

Lemma 2.7. Let G and H be groups. Suppose that cd(G) ⊆ cd(H). Then
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Table 1. Sporadic simple groups and their automorphism groups

S p(S) d1(S) d2(S) d3(S)
M11 11 10 11 16
M12 11 11 16 45
M12.2 11 22 32 45
J1 19 56 76 77
M22 11 21 45 55
M22.2 11 21 45 55
J2 7 14 21 36
J2.2 7 28 36 42
M23 23 22 45 230
HS 11 22 77 154
HS.2 11 22 77 154
J3 19 85 323 324
J3.2 19 170 324 646
M24 23 23 45 231
McL 11 22 231 252
McL.2 11 22 231 252
He 17 51 153 680
He.2 17 102 306 680
Ru 29 378 406 783
Suz 13 143 364 780
Suz.2 13 143 364 780
O′N 31 10944 13376 25916
O′N.2 31 10944 26752 37696
Co3 23 23 253 275
Co2 23 23 253 275
Fi22 13 78 429 1001
Fi22.2 13 78 429 1001
HN 19 133 760 3344
HN.2 19 266 760 3344
Ly 67 2480 45694 48174
Th 31 248 4123 27000
Fi23 23 782 3588 5083
Co1 23 276 299 1771
J4 43 1333 299367 887778
Fi′24 29 8671 57477 249458
Fi′24.2 29 8671 57477 249458
B 47 4371 96255 1139374
M 71 196883 21296876 842609326

2F4(2)′ 13 26 27 78
2F4(2)′.2 13 27 52 78

(i) di(G) ≥ di(H), for all i ≥ 1;
(ii) If G is almost simple then π(G) ⊆ π(H).

Proof. (i) is obvious. (ii) follows from Corollary 2.6 as ρ(G) ⊆ ρ(H) ⊆ π(H). �
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3. Proofs of the main results

Theorem 3.1. Let G be an almost simple group with socle S and let n ≥ 5 be an
integer. If cd(G) ⊆ cd(Sn) then S ∼= An.

Proof. Using the classification of finite simple groups, S is an alternating group of
degree at least 5, a finite simple group of Lie type or one of the 26 sporadic groups.
We will treat the Tits group as a sporadic group rather than a group of Lie type.

Step 1. Eliminate simple groups of Lie type. By way of contradiction, we assume
that S is a simple group of Lie type in characteristic p and cd(G) ⊆ cd(Sn) with
n ≥ 5. By the isomorphisms L2(4) ∼= L2(5) ∼= A5, L2(9) ∼= A6 and L4(2) ∼= A8, we
can assume that S is not one of the groups listed above nor the Tits group. It is
well known that the Steinberg character of S of degree |S|p extends to χ ∈ Irr(G)
and hence χ(1) = |S|p is a non-trivial power of p. Assume first that |S|p is not the
minimal character degree of Sn, that is |S|p > n − 1. It follows from Lemma 2.3
that n ∈ {5, 6, 8, 9} and |S|p = 5, |S|p ∈ {32, 23}, |S|p = 26, |S|p = 33, respectively.
It is routine to check that these cases cannot happen. Thus |S|p = n− 1 = d1(Sn).
Now Lemma 2.4 will provide a contradiction unless S = L2(q), where q = pf ≥ 4.
Assume that S = L2(q) and thus q ≥ 7. As |S|p = q = d1(Sn), by Lemma 2.5, G
must contain an irreducible character of degree q + 1 and hence q + 1 ∈ cd(Sn).
Since S 6= L4(2) ∼= A8, we have d2(Sn) = n(n− 3)/2. We have n− 1 = q and hence
as q ≥ 7, we obtain d2(Sn) = n(n− 3)/2 = (q + 1)(q − 2)/2 > q + 1 > q = d1(Sn),
which contradicts Lemma 2.7(i). This finishes the proof of Step 1.

Step 2. Eliminate sporadic simple groups and the Tits group. By way of con-
tradiction, we assume that S is a simple sporadic group or the Tits group and
that cd(G) ⊆ cd(Sn) with n ≥ 5. The character degrees of Sn, where 5 ≤ n ≤ 31
can be found in [6]. Moreover the character degrees of sporadic simple groups
and the Tits group together with their automorphism groups are also available
in [6]. It is routine to check that cd(G) * cd(Sn) for any 5 ≤ n ≤ 31 and any
almost simple group G with socle S, where S is a sporadic simple group or the
Tits group. Thus we can assume that n ≥ 32. It follows from Lemma 2.1 that
d2(Sn) = n(n− 3)/2 ≥ d2(S32) = 464. By Lemma 2.7(i) and Table 1, we only need
to consider the following cases: S ∈ {O′N,HN,Ly, Th, F i23, J4, F i′24, B,M}.

(1) S = O′N. In this case, we have |Out(S)| = 2 so that either G = S or
G = S.2. Assume first that G = S = O′N. Then d9(O′N) = 58653 and since
n ≥ 32, by Lemma 2.1, d9(Sn) ≥ 62496 > d9(O′N), which contradicts Lemma
2.7(i). Now assume G = O′N.2. Then d7(G) = 58653 < 62496 ≤ d9(Sn) so that
d7(G) ∈ {d7(Sn), d8(Sn)}. However we can check that these equations cannot hold
for any n ≥ 32. Thus cd(G) * cd(Sn).

(2) S = HN. Then |Out(S)| = 2 so that G = S or G = S.2. From [5], we have
d7(S) = 16929 and d7(S.2) = 17556. Observe that d7(G) < 31000 ≤ d7(Sn) so that
cd(G) * cd(Sn) by Lemma 2.7(i).

(3) S = Ly. Since |Out(S)| = 1, we have G = S so that p(S) = 67 ∈ π(Sn) by
Lemma 2.7(ii), and hence n ≥ 67. As d5(Ly) = 381766 < 718575 ≤ d7(Sn), we
deduce that d5(Ly) ∈ {d5(Sn), d6(Sn)}. However we can check that these equations
cannot hold for any n ≥ 67. Thus cd(G) * cd(Sn).

(4) S = Th. As Out(S) is trivial, we have G = S. Since d1(G) = 248 < 464 ≤
d2(Sn), it follows from Lemma 2.7(i) that d1(G) = d1(Sn) = n − 1 and hence
n = 249. But then d2(Sn) = n(n− 3)/2 ≥ 30627 > d2(Th). Thus cd(G) * cd(Sn).
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(5) S = Fi23. As Out(S) is trivial, we have G = S. Since d2(G) = 3588 < 4464 ≤
d4(Sn), it follows from Lemma 2.7(i) that d2(G) ∈ {d2(Sn), d3(Sn)}. However we
can check that these equations cannot hold for any n ≥ 32. Thus cd(G) * cd(Sn).

(6) S = J4. Since |Out(S)| = 1, we have G = S so that p(S) = 43 ∈ π(Sn)
and hence n ≥ 43. As d1(J4) = 1333 < 11438 ≤ d4(Sn), we deduce that d1(J4) ∈
{di(Sn) | i = 1, 2, 3}. Solving these equations, we obtain n = 1334. But then
d2(Sn) = 887777 > 299367 = d2(J4). Thus cd(G) * cd(Sn).

(7) S = Fi′24. We have G = S or G = S.2. In both cases, we have d1(G) = 8671
and d2(G) = 57477. Observe that d1(G) = 8671 < 8960 ≤ d6(Sn) so that d1(G) ∈
{di(Sn) | i = 1, · · · , 5}. Solving these equations, we obtain n = 8672. But then
d2(Sn) > d2(G). Thus cd(G) * cd(Sn).

(8) S = B. Since |Out(S)| = 1, we have G = S so that p(S) = 47 ∈ π(Sn)
and hence n ≥ 47. As d1(B) = 4371 < 15134 ≤ d4(Sn), we deduce that d1(B) ∈
{d1(Sn), d2(Sn), d3(Sn)}. Solving these equations, we have n = 95 or n = 4372. If
the latter case holds then d2(Sn) > d2(B), a contradiction. Thus n = 95. But then
d3(S95) = 4371 < d2(B) < d4(S95) = 133950. Thus cd(G) * cd(Sn).

(9) S = M. Since |Out(S)| = 1, we have G = S so that p(S) = 71 ∈ π(Sn)
and hence n ≥ 71. As d1(M) = 196883 < 914480 ≤ d7(Sn), we deduce that
d1(M) ∈ {di(Sn) | i = 1, · · · , 6}. Solving these equations, we obtain n = 196884.
But then d2(Sn) > 21296876 = d2(M). Thus cd(M) * cd(Sn).

Step 3. If S ∼= Am, with m ≥ 5, then m = n. Let λ = (m− 1, 1) be a partition
of m. Since m ≥ 5, λ is not self-conjugate so that the irreducible character χλ

of Sm corresponding to λ is still irreducible upon restriction to Am. Note that
Aut(Am) = Sm whenever m 6= 6 while |Out(A6)| = 4. Assume first that m 6= 6.
Then G ∈ {Am, Sm} and G contains an irreducible character of degree m−1. Since
cd(G) ⊆ cd(Sn), we have m − 1 ≥ d1(Sn) = n − 1 so that m ≥ n. If m = n
then we are done. Hence we assume that m > n ≥ 5. It follows that m ≥ 6 and
hence d1(Am) = d1(Sm) = m − 1 and thus d1(G) = m − 1 > n − 1 = d1(Sn).
If m ≤ 17 then 5 ≤ n < m ≤ 17. Using [6], we can check that m = n. So we
can assume that m ≥ 18. It follows that 17 ∈ π(G) and so by Lemma 2.7(ii) we
have 17 ∈ π(Sn), which implies that n ≥ 17. Thus 17 ≤ n < m. It follows from
Lemma 2.1 that d2(Sn) = n(n − 3)/2. Since cd(G) ⊆ cd(Sn) and d1(G) > d1(Sn),
it follows that d1(G) ≥ d2(Sn). Then m − 1 ≥ n(n − 3)/2. Since n ≥ 17, we have
m− 2n ≥ n(n− 3)/2 + 1− 2n = n(n− 7)/2 + 1 > 0 so that m > 2n. Therefore n <
m/2 < m. By Lemma 2.2, there exists a prime p such that m/2 ≤ p < m. It follows
that p ∈ π(G) but p 6∈ π(Sn) since p > n, which contradicts Lemma 2.7(ii). Thus
S ∼= An whenever m ≥ 5,m 6= 6. Now assume that m = 6, and A6 EG ≤ Aut(A6).
It follows that G ∈ {A6, A6.21 ∼= S6, A6.22 ∼= PGL2(9), A6.23 ∼= M10, A6.2

2}. We
need to show that n = 6. If G ∈ {A6, S6}, then G contains a character of degree 5
so that 5 ≥ n − 1 and hence n ≤ 6. As 10 ∈ cd(G) but 10 6∈ cd(S5), we conclude
that n = 6. If G ∼= PGL2(9) then {8, 9} ⊆ cd(Sn). But this cannot happen by
Lemma 2.3. Assume that one of the last two cases holds. Then {9, 16} ⊆ cd(Sn)
so that by Lemma 2.3, n = 6. The proof is now complete. �

Remark 3.2. Let λ = (k + 1, 1k) when n = 2k + 1 and λ = (k, 2, 1k−2) when
n = 2k. Then λ is a self-conjugate partition of n. We conjecture that χλ(1)/2 ∈
cd(An) − cd(Sn) and χλ(1) ∈ cd(Sn) − cd(An). If this conjecture is true then, in
the situation of Theorem 3.1, we deduce that G ∼= Sn or G ∼= M10 and n = 6. This
result will be useful in studying Huppert’s Conjecture for alternating groups.
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Theorem 3.3. Let G be a group. Assume that |G : G′| = 2 and that G′ ∼= S2 is
a unique minimal normal subgroup of G, where S is a non-abelian simple group.
Then cd(G) * cd(Sn) for any n ≥ 5.

Proof. By way of contradiction, assume that cd(G) ⊆ cd(Sn). Let α ∈ Irr(S) with
α(1) > 1 and put θ = α × 1 ∈ Irr(G′). Observe that θ is not G-invariant so that
IG(θ) = G′ hence θG ∈ Irr(G) and so θG(1) = 2α(1) ∈ cd(Sn). On the other hand,
if ϕ = α × α ∈ Irr(G′) then ϕ is G-invariant and since G/G′ is cyclic, we deduce
that ϕ extends to ψ ∈ Irr(G), so that ψ(1) = α(1)2 ∈ cd(Sn). We conclude that
if a ∈ cd(S) − {1} then 2a, a2 ∈ cd(Sn). Let r ∈ π(S). By Corollary 2.6, r|a for
some a ∈ cd(S)−{1}. Since a2 ∈ cd(Sn), by [8, Theorem 3.11] we have a2|n!. Thus
r2|n! so that n ≥ 2r. Using the classification of finite simple groups, we consider
the following cases.

Case S = Am, with m ≥ 5. As m ≥ 5, it follows from the first paragraph that
n ≥ 10. Assume first that m ∈ {5, 6, 8, 9, 10}. Observe that m − 1 ∈ cd(S) and
hence 2(m− 1), (m− 1)2 ∈ cd(Sn). For these values of m, we see that (m− 1)2 is a
prime power and so by Lemma 2.3, as n ≥ 10, we have d1(Sn) = n− 1 = (m− 1)2.
As m ≥ 5, we obtain d1(Sn) = (m − 1)2 > 2(m − 1) > 1, which is a contradiction
since 2(m − 1) ∈ cd(Sn). Now assume that m = 7. As above, we have n ≥ 14.
As 6 ∈ cd(S), we obtain 6.2 = 12 ∈ cd(Sn) and so 12 ≥ d1(Sn) = n − 1 which
implies n ≤ 13, a contradiction. Thus we can assume that m ≥ 11 and hence
n ≥ 22. We have m− 1 ∈ cd(S) so that 2(m− 1) and (m− 1)2 are both in cd(Sn).
Similarly, by Lemma 2.1, we have m(m − 3)/2, (m − 1)(m − 2)/2 ∈ cd(S) and
so m(m − 3), (m − 1)(m − 2) ∈ cd(Sn). We will show that m < n. By way of
contradiction, assume that m ≥ n. As n ≥ 22, by Lemma 2.2, there exists a prime
r such that n/2 < r ≤ n. It follows that the largest power of r dividing n! is r.
Since r ≤ n ≤ m, we deduce that r ∈ π(Am) and so r2|n!, which is a contradiction.
Thus m < n. Observer that 1 < 2(m−1) < m(m−3) < (m−1)(m−2) < (m−1)2,
since m ≥ 11. Thus (m − 1)2 ≥ d4(Sn) = n(n − 1)(n − 5)/6 by Lemma 2.1.
Combining with the fact that m < n, we obtain n(n − 1)(n − 5)/6 ≤ (n − 1)2 so
that n(n− 5) ≤ 6(n− 1) or equivalently n(n− 11) + 6 ≤ 0, which is impossible as
n ≥ 22.

Case S is a finite simple group of Lie type in characteristic p, with S 6= 2F4(2)′.
Since L2(4) ∼= L2(5) ∼= A5, we can assume that S 6∼= L2(4). Let St be the Steinberg
character of S. We can check that St(1) = |S|p ≥ 5. Since St(1) ∈ cd(S), we
obtain 2St(1) ∈ cd(Sn) and St(1)2 ∈ cd(Sn). By Lemma 2.3, assume first that
n − 1 = St(1)2. Then d1(Sn) = St(1)2 > 2St(1), which is a contradiction. Now
assume that St(1)2 6= n − 1. By Lemma 2.3, n ∈ {5, 6, 8, 9}. Since St(1)2 is an
even prime power, one of the following cases holds: n = 6, St(1)2 ∈ {32, 24} or
n = 8, St(1)2 = 26. Assume first that n = 6. Then St(1) ∈ {3, 22} which implies
that St(1) ≤ 4, a contradiction as S 6= L2(4). Finally, assume that n = 8. Then
St(1) = 23 = 8. However 2St(1) = 24 6∈ cd(S8), a contradiction.

Case S is a sporadic simple group or the Tits group. Recall that p(S) is the
largest prime divisor of S. We have n ≥ 2p(S).
(1) S ∈ {M11,M12, J1,M22, J2,M23, HS, J3,M24, He,Ru,Co3, Co2, Co1,

2F4(2)′}.
These cases can be eliminated as follows: Since n ≥ 2p(S) ≥ 14, we have d2(Sn) =
n(n− 3)/2 ≥ p(S)(2p(S)− 3). Next observe that 2di(S) ∈ cd(G) ⊆ cd(Sn), for i =
1, 2 and that 1 < 2d1(S) < 2d2(S). In each case, we have p(S)(2p(S)− 3) > 2d2(S)
and hence d2(Sn) > 2d2(S) > 2d1(S) > 1, which contradicts Lemma 2.7(i).
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(2) S ∈ {McL, Suz, F i22, HN,Ly, Th, J4, B}. Since n ≥ 2p(S) ≥ 14, we have
d2(Sn) = n(n−3)/2 ≥ p(S)(2p(S)−3). We have d2(Sn) ≥ p(S)(2p(S)−3) > 2d1(S)
and so 2d1(S) = d1(Sn) = n − 1 so that n = 2d1(S) + 1. But then d2(Sn) =
n(n − 3)/2 = (d1(S) − 1)(2d1(S) + 1) > 2d2(S) > 2d1(S) > 1, which contradicts
Lemma 2.7(i) as 2di(S) ∈ cd(G) ⊆ cd(Sn), where i = 1, 2.
(3) S = O′N. Then p(S) = 31. We have n ≥ 2p(S) = 62 and so by Lemma 2.1,
d7(Sn) ≥ 520025. As d8(S) = 58311, we have 2d8(S) = 116622 ∈ cd(Sn). Note that
2di(S) ∈ cd(Sn) for i = 1, 2, · · · , 8 and so 2di(S) ≥ di(Sn) for all 1 ≤ i ≤ 8. As
d7(Sn) ≥ 520025 > 116622 = 2d8(S), we get a contradiction.
(4) If S = Fi23 then p(S) = 23. We have n ≥ 2p(S) = 46 and so by Lemma
2.1, d4(Sn) ≥ 14145. As d2(S) = 3588, we obtain 2d2(S) = 7176 ∈ cd(Sn). Since
d4(Sn) > 7176 > 2d1(S), we must have 7176 ∈ {d2(Sn), d3(Sn)}. However, we can
check that these cases cannot happen.
(5) S = Fi′24. Then p(S) = 29 and n ≥ 2p(S) = 58 so that by Lemma 2.1,
d4(Sn) ≥ 29203. As {8671, 57477} ⊆ cd(S), we obtain {17342, 114954} ⊆ cd(Sn).
Since d4(Sn) > 17342, we have 17342 ∈ {d1(Sn), d2(Sn), d3(Sn)}. It follows that
17342 ≤ (n − 1)(n − 2)/2 and hence n ≥ 188. But then d2(Sn) ≥ 17390 > 17342.
Thus d1(Sn) = n − 1 = 17342 hence n = 17343 and so d2(Sn) ≥ 150363810 >
114954, a contradiction.
(6) S = M. Then p(S) = 71 and n ≥ 2p(S) = 142. By Lemma 2.1, d4(Sn) ≥
457169. As {196883, 21296876} ⊆ cd(S), we obtain {393766, 42593752} ⊆ cd(Sn).
Since d4(Sn) > 393766, we have 393766 ∈ {d1(Sn), d2(Sn), d3(Sn)}. It follows that
393766 ≤ (n − 1)(n − 2)/2 and hence n ≥ 889. As d2(Sn) ≥ 393827 > 393766, we
have d1(Sn) = n − 1 = 393766 hence n = 393767 and so d2(Sn) ≥ 77525634494 >
42593752 > 393766, a contradiction. The proof is complete. �

Proof of Theorem 1.1. Suppose that X1(G) = X1(Sn). It follows that |G| =
|Sn| = n!, |G : G′| = 2, k(G) = k(Sn) and cd(G) = cd(Sn). For n ≤ 3, the result
is trivial. If n = 4, then the result follows from [2, Chapter 17, Exercise 2]. Thus
from now on, we assume that n ≥ 5.

We first show that G′ = G′′. By way of contradiction, assume that G′′ < G′. Let
N ≤ G′ be a normal subgroup of G maximal such that G/N is solvable and G′/N
is the unique minimal normal subgroup of G/N. By [8, Lemma 12.3], all non-linear
irreducible characters of G/N have equal degree f and either G/N is a p-group,
Z(G/N) is cyclic and G/N/Z(G/N) is elementary abelian of order f2 or G/N is
a Frobenius group with an abelian Frobenius complement of order f, and G′/N
is the Frobenius kernel and is an elementary abelian p-group. Assume first that
G/N is a p-group. As G/N/Z(G/N) is abelian, we have G′/N ≤ Z(G/N). Since
|G/N : G′/N | = 2 and G/N is non-abelian, we deduce that G′/N = Z(G/N) and so
G/N/Z(G/N) is a cyclic group of order 2, which is a contradiction as G/N/Z(G/N)
is elementary abelian of order f2. Thus the second situation holds. It follows that
f = |G/N : G′/N | = |G : G′| = 2. Therefore 2 ∈ cd(G) = cd(Sn), which is
impossible as the minimal non-trivial irreducible character degree of Sn is n−1 ≥ 4
as n ≥ 5.

Let M ≤ G′ be a normal subgroup of G so that G′/M is a chief factor of G
and so G′/M ∼= Sk, where S is a non-abelian simple group where k ≥ 1. Let
C/M = CG/M (G′/M). Then M ≤ C EG.

Assume first that C = M. Then G′/M is the unique minimal normal subgroup of
G/M. Since |G/M : G′/M | = |G : G′| = 2, we deduce that k is at most 2. However
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k cannot be 2 by Theorem 3.3. Thus k = 1 and so G/M is an almost simple group
with socle G′/M and cd(G/M) ⊆ cd(Sn). By Theorem 3.1, we have G′/M ∼= An. It
follows that |G/M | = 2|G′/M | = n! = |Sn| and so M = 1 as |G| = |Sn|. Thus G is
an almost simple group with socle An and |G| = n!. If n 6= 6 then as Aut(An) = Sn
we deduce that G ∼= Sn. Now assume that n = 6. Then G is isomorphic to one of
the following groups S6

∼= A6.21, PGL2(9) ∼= A6.22 and M10
∼= A6.23. Using [5], we

can see that G must be isomorphic to S6.
Finally assume that C 6= M. It follows that C/M is a non-trivial normal subgroup

of G/M and so C/M ∩ G′/M is trivial. Thus G′ < G′C ≤ G. Since |G : G′| = 2,
we deduce that G = G′C and hence G/M = G′/M × C/M, where C/M is a cyclic
subgroup of order 2. Thus cd(G′/M) = cd(G/M) ⊆ cd(Sn). Applying Theorem 3.1
again, we obtain G′/M ∼= An, and hence G/M ∼= An×Z2. By comparing the orders,
we deduce as in previous case that M = 1 and so G ∼= An×Z2. We now show that
this case cannot happen. In fact, we have k(G) = 2k(An), and hence it suffices
to show that k(Sn) < 2k(An). Let λ be a partition of n and denote by χλ the
irreducible character of Sn associated to λ. If λ is not self-conjugate, that is λ 6= λ′,
where λ′ denotes the conjugate of λ, then (χλ)An = (χλ

′
)An ∈ Irr(An). Otherwise,

(χλ)An
= χλ+ +χλ−, where χλ+, χλ− ∈ Irr(An) are two non-equivalent irreducible

characters of the same degree. Let ps(n) be the number of self-conjugate partitions
of n. Then k(An) = (k(Sn) − ps(n))/2 + 2ps(n). Hence k(Sn) = 2k(An) − 3ps(n).
So it suffices to show that ps(n) ≥ 1 for n ≥ 5. In fact, if n = 2l + 1, then we take
λ = (l + 1, 1l) and if n = 2l then take λ = (l, 2, 1l−1). Then λ is a self-conjugate
partition of n so that ps(n) ≥ 1. This finishes the proof. �
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