Ordered Dictionaries



Ordered Dictionaries

- Keys are ordered
- Perform usual dictionary operations (insertItem, removeItem, findElement) and maintain an order relation for the keys
 - we use an external comparator for keys
- New operations:
 - closestKeyBefore(k), closestElemBefore(k)
 - closestKeyAfter(k), closestElemAfter(k)
- "NO_SUCH_KEY" is returned if no such item in the dictionary satisfies the query.

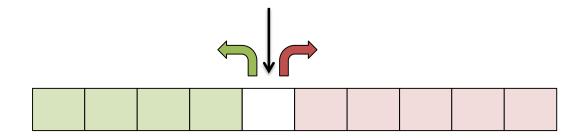
Binary Search

- Items are ordered in a sorted sequence
- Find an element *k*

\leq	\leq	\leq	≤ :	\leq	\leq :	≤ <u>≤</u>	≦ :	\leq

Binary Search

- Items are ordered in a sorted sequence
- Find an element k
 - After checking a key j in the sequence, we can tell if item with key k will come before or after it



- Which item should we compare against first? The middle

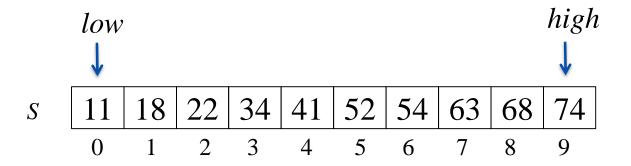
```
if low > high then return NO\_SUCH\_KEY

mid \leftarrow \lfloor (low + high) / 2 \rfloor

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

if key(mid) > k then return BinarySearch(S, k, low, mid - 1)
```



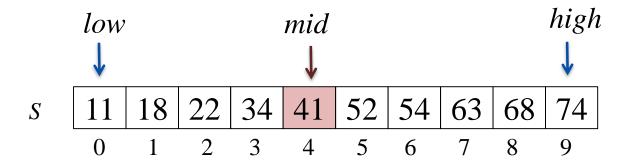
```
if low > high then return NO\_SUCH\_KEY

mid \leftarrow \lfloor (low + high) / 2 \rfloor

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

if key(mid) > k then return BinarySearch(S, k, low, mid - 1)
```



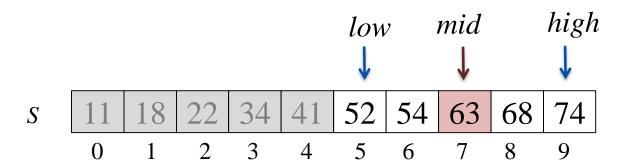
```
if low > high then return NO\_SUCH\_KEY

mid \leftarrow \lfloor (low + high) / 2 \rfloor

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

if key(mid) > k then return BinarySearch(S, k, low, mid - 1)
```



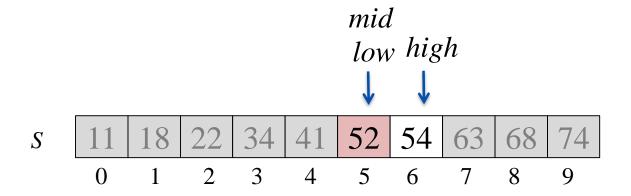
```
if low > high then return NO\_SUCH\_KEY

mid \leftarrow \lfloor (low + high) / 2 \rfloor

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

if key(mid) > k then return BinarySearch(S, k, low, mid - 1)
```



Binary Search

Algorithm BinarySearch(*S*, *k*, *low*, *high*):

```
if low > high then return NO\_SUCH\_KEY

mid \leftarrow \lfloor (low + high) / 2 \rfloor

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

if key(mid) > k then return BinarySearch(S, k, low, mid - 1)
```

Each successive call to BinarySearch halves the input, so the running time is $O(\log n)$

Lookup Table

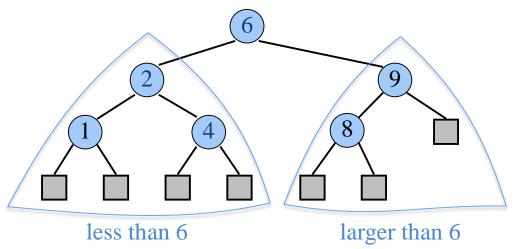
- A dictionary implemented by means of an array-based sequence which is sorted by key
 - why use an array-based sequence rather than a linked list?

• Performance:

- insertItem takes O(n) time to make room by shifting items
- remove Item takes O(n) time to compact by shifting items
- findElement takes $O(\log n)$ time, using binary search
- Effective only for
 - small dictionaries, or
 - when searches are the most common operations, while insertions and removals are rarely performed

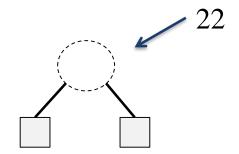
Binary Search Tree

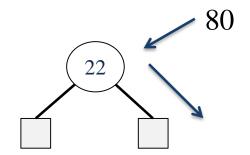
- A binary search tree is a binary tree where each internal node stores a (key, element)-pair, and
 - each element in the left subtree is smaller than the root
 - each element in the right subtree is larger than the root
 - the left and right subtrees are binary search trees
- An inorder traversal visits items in ascending order

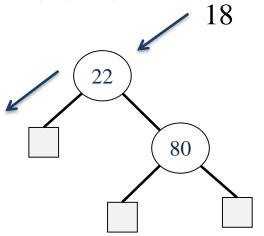


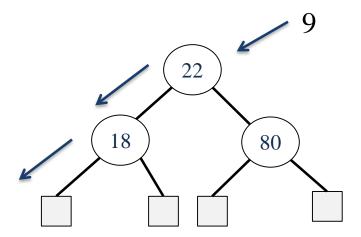
BST-Insert(k, v)

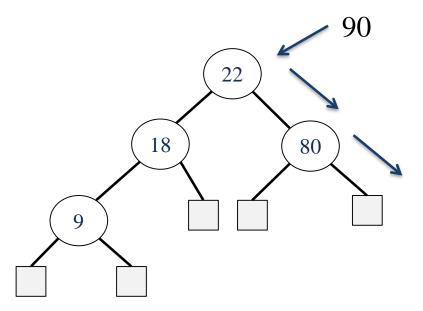
- Idea
 - find a free spot in the tree and add a node which stores that item (k, v)
- Strategy
 - start at root r
 - if k < key(r), continue in left subtree
 - if k > key(r), continue in right subtree
- Runtime is O(h), where h is the height of the tree

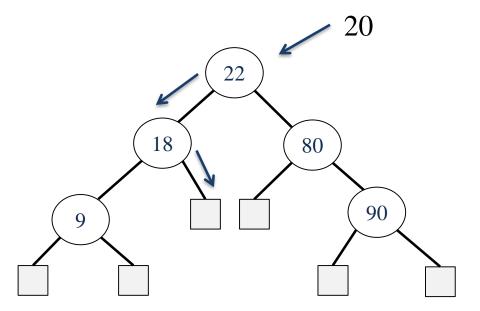


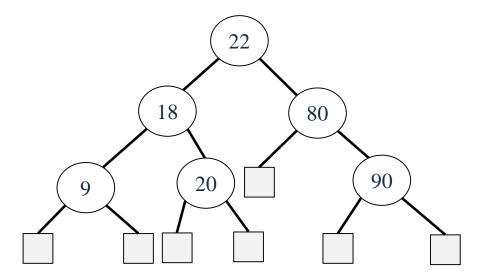










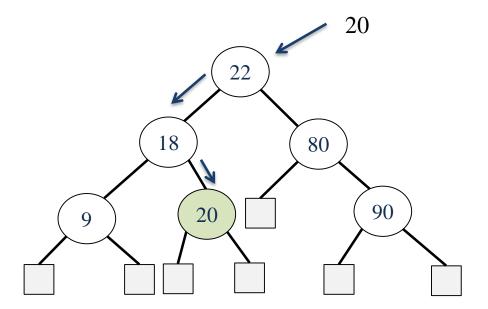


BST - Find

- Find the node with key *k*
- Strategy
 - start at root r
 - if k = key(r), return r
 - if k < key(r), continue in left subtree
 - if k > key(r), continue in right subtree
- Runtime is O(h), where h is the height of the tree

BST – Find Example

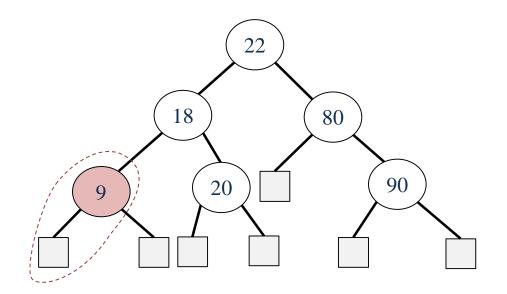
Find the number 20



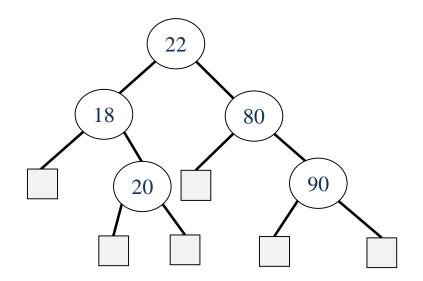
BST - Delete

- Delete the node with key *k*
- Strategy: let *n* be the position of FindElement(*k*)
 - Remove *n* without creating "holes" in the tree
 - Case 0: *n* has two children with external nodes
 - Case 1: n has a child which is an internal node
 - Case 2: n has two children with internal nodes
- Runtime is O(h), where h is the height of the tree

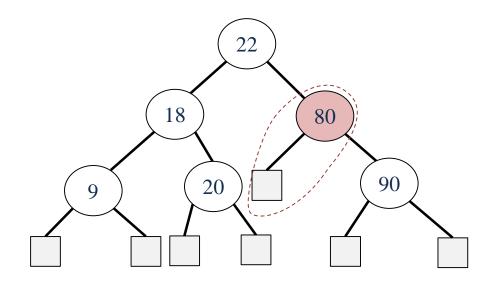
Case 0: *n* has two children which are external nodes



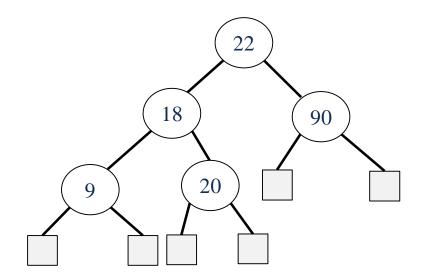
Case 0: *n* has two children which are external nodes



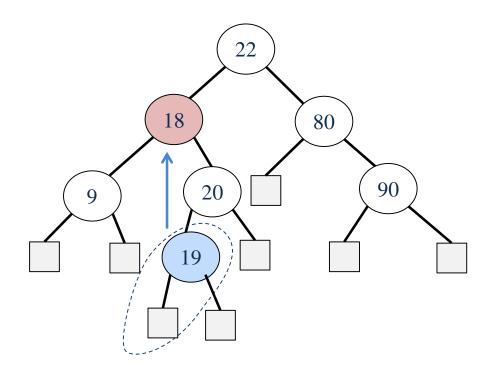
Case 1: *n* has a child which is an internal node



Case 1: *n* has a child which is an internal node

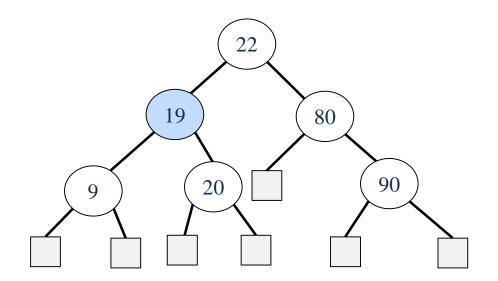


Case 2: *n* has two children which are internal nodes
Find the first internal node *m* that follows *n* in an inorder traversal
Replace *n* with *m*



Delete 18

Case 2: *n* has two children which are internal nodes Find the first internal node *m* that follows *n* in an inorder traversal Replace *n* with *m*



Delete 18

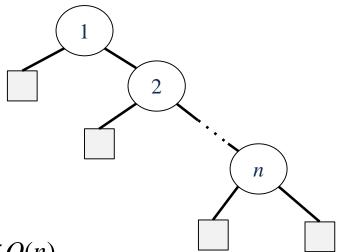
BST Performance

Space used is O(n)

Runtime of all operations is O(h)

• What is *h* in the worst case?

Consider inserting the sequence 1, 2, ..., n-1, n



Worst case height $h \in O(n)$.

• How do we keep the tree balanced?

Dictionary: Worst-case Comparison

	<u>Unordered</u>		Ordered				
	Log file	Hash table	Lookup table	Binary Search Tree	Balanced Trees (like AVL)		
size, isEmpty	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)		
keys, elements	O(n)	O(n)	$O(\mathbf{n})$	O(n)	O(n)		
findElement	O(n)	$O(n)^{**}$	$O(\log n)$	$O(\boldsymbol{h})$	$O(\log n)$		
insertItem	<i>O</i> (1)	$O(n)^{**}$	O(n)	$O(\boldsymbol{h})$	$O(\log n)$		
removeElement	O(n)	$O(n)^{**}$	O(n)	$O(\boldsymbol{h})$	$O(\log n)$		
closestKey closestElem	O(n)	O(n)	$O(\log n)$	$O(\boldsymbol{h})$	$O(\log n)$		

** Expected running time is O(1)

Exercises

- You are given two sorted integer arrays *A* and *B* such that no integer is contained twice in the same array. *A* and *B* are nearly identical. However, *B* is missing exactly one number. Find the missing number in *B*.
- You are given a sorted array A of distinct integers. Determine whether there exists an index i such that A[i] = i.
- Insert items with the following keys (in the given order) into an initially empty binary search tree: 30, 40, 24, 58, 48, 26, 11, 13. Draw the tree after each insertion.