Ordered Dictionaries




Ordered Dictionaries

Keys are ordered

Perform usual dictionary operations (insertltem, removeltem,
findElement) and maintain an order relation for the keys

— we use an external comparator for keys

New operations:
— closestKeyBefore(k), closestElemBefore(k)
— closestKeyAfter(k), closestElemAfter(k)

“NO _SUCH KEY™ 1s returned 1f no such item in the dictionary
satisfies the query.

Binary Search Trees



Binary Search

Items are ordered in a sorted sequence
Find an element k
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Binary Search

 [tems are ordered in a sorted sequence
* Find an element k

— After checking a key j in the sequence, we can tell if item with
key k will come before or after it

ﬁlr'

— Which item should we compare against first? The middle



Binary Search: Find k = 52

Algorithm BinarySearch(S, k, low, high):
If low > high then return NO_SUCH_KEY
mid < |(low + high) / 2]
If key(mid) =k then return elem(mid)
If key(mid) < k then return BinarySearch(S, k, mid + 1, high)
If key(mid) > k then return BinarySearch(S, k, low, mid -1)

low high
| |

s |11]18|2234|41|52|54|63 /68|74
0o 1 2 3 4 5 6 7 8 9
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If key(mid) =k then return elem(mid)
If key(mid) < k then return BinarySearch(S, k, mid + 1, high)
If key(mid) > k then return BinarySearch(S, k, low, mid -1)

mid _
low high

R

s |11(18|22|34|41|52 54|63 |68 |74




Binary Search

Algorithm BinarySearch(S, k, low, high):
If low > high then return NO_SUCH_KEY
mid < |(low + high) / 2]
If key(mid) =k then return elem(mid)
If key(mid) < k then return BinarySearch(S, k, mid + 1, high)
If key(mid) > k then return BinarySearch(S, k, low, mid -1)

Each successive call to BinarySearch halves the input, so the running time is O(logn)



Lookup Table

A dictionary implemented by means of an array-based sequence
which is sorted by key

— why use an array-based sequence rather than a linked list?

Performance:

— Insertltem takes O(n) time to make room by shifting items
— removeltem takes O(n) time to compact by shifting items
— findElement takes O(log n) time, using binary search

Effective only for
— small dictionaries, or

— when searches are the most common operations, while
Insertions and removals are rarely performed



Binary Search Tree

« Abinary search tree is a binary tree where each internal node stores
a (key, element)-pair, and

— each element in the left subtree is smaller than the root
— each element in the right subtree is larger than the root
— the left and right subtrees are binary search trees

« An inorder traversal visits items in ascending order

R

less than 6 larger than 6

Binary Search Trees
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BST — Insert(k, v)

* ldea
— find a free spot in the tree and add a node which stores that item
(k, v)
« Strategy

— start at root r
— 1f k < key(r), continue in left subtree
— 1f k > key(r), continue in right subtree

* Runtime is O(h), where h is the height of the tree



BST — Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.
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BST — Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.
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Insert the numbers 22, 80, 18, 9, 90, 20.
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BST — Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.
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BST — Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.
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BST — Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.




BST — Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.




BST - Find

 Find the node with key k

» Strategy
— start at root r
— 1f k = key(r), returnr
— 1f k < key(r), continue in left subtree
— 1f k > key(r), continue in right subtree

« Runtime is O(h), where h is the height of the tree



BST — Find Example

Find the number 20




BST - Delete

* Delete the node with key k

« Strategy: let n be the position of FindElement(k)
— Remove n without creating “holes” in the tree
— Case 0: n has two children with external nodes
— Case 1: n has a child which is an internal node
— Case 2: n has two children with internal nodes

« Runtime is O(h), where h is the height of the tree



BST — Delete Example

Case 0: n has two children which are external nodes

Delete 9



BST — Delete Example

Case 0: n has two children which are external nodes

Delete 9



BST — Delete Example

Case 1: n has a child which is an internal node

Delete 80



BST — Delete Example

Case 1: n has a child which is an internal node

o I

Delete 80



BST — Delete Example

Case 2: n has two children which are internal nodes
Find the first internal node m that follows n In an inorder traversal
Replace n with m

Delete 18




BST — Delete Example

Case 2: n has two children which are internal nodes

Find the first internal node m that follows n In an inorder traversal
Replace n with m

Delete 18



BST Performance

Space used is O(n)
Runtime of all operations is O(h)
« What is h in the worst case?

Consider inserting the sequence 1,2, ...,n—1,n

-
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Worst case height h € O(n).
« How do we keep the tree balanced?



Dictionary: Worst-case Comparison

Unordered Ordered
Log file Hash table Lookup Binary Balanced Trees
table Search Tree (like AVL)

size, isEmpty | O(1) 0O(1) 0O(1) 0O(1) 0O(1)

keys, elements | O(n) O(n) O(n) O(n) O(n)
findElement | O(n) O(n)** O(logn) O(h) O(logn)
insertitem | O(1) O(n)** O(n) O(h) O(logn)
removeElement | O(n) O(n)** O(n) O(h) O(logn)
closestkey | O(n) O(n) O(logn) O(h) O(logn)

closestElem

** Expected
running time
IS O(1)



Exercises

You are given two sorted integer arrays A and B such that no integer
IS contained twice In the same array. A and B are nearly identical.
However, B is missing exactly one number. Find the missing number
In B.

You are given a sorted array A of distinct integers. Determine
whether there exists an index 1 such that A[i] = 1.

Insert items with the following keys (in the given order) into an
Initially empty binary search tree: 30, 40, 24,58, 48,26,11,1 3.
Draw the tree after each insertion.



