
Red-Black Trees

Outline

• From (2,4) trees to Red-Black trees

• Definition and height

• Search

• Insertion

– Restructuring

– Recoloring

• Deletion

– Restructuring

– Recoloring

– Adjustment

Red-Black Trees 2

(2,4) Trees

A multi-way search tree, where an internal node has k children and

stores k-1 elements, and it has the following additional properties:

• Node-Size property: all internal nodes have at most four children

(i.e., k = 2,3,4)

• Depth property: all external nodes have the same depth

Depending on the number of children, an internal node is called either a

2-node, 3-node, or 4-node

Red-Black Trees 3

11 24

2 6 8 15 27 32

3-node

2-node

4-node

From (2,4) to Red-Black Trees

• A red-black tree is a representation of a (2,4) tree by means of a

binary tree whose nodes are colored red or black.

• In comparison with a (2,4) tree, a red-black tree has

– same logarithmic time performance

– simpler implementation with a single node type

Red-Black Trees 4

2 6 73 54

4 6

2 7

5

3

3

5
or

Red-Black Trees

A binary search tree with nodes colored red and black in a way that

satisfies the following color properties:

1. Root property: the root is black.

2. External property: every leaf is black.

3. Internal property: the children of a red node are black.

4. Depth property: all leaves have the same black depth.

Red-Black Trees 5

9

154

62 12

7

21

Ex: Is it a Red-Black Tree?

Red-Black Trees 6

Yes

9

154

9

154

Yes

9

154

No

Violates root & internal property

9

154

No

Violates external property

Ex: Is it a Red-Black Tree?

Red-Black Trees 7

15

213

5 17

8

22

23

No

Violates depth property

Black depth = 4

Black depth = 2

Height of a Red-Black Tree

Theorem: A red-black tree storing n items has height O(log n)

Proof:

Let T* be the portion of the tree T consisting of all nodes with depth ≤ h*

T* is complete. Thus, h* ≤ logn.

Because h ≤ 2h*, h ≤ 2logn ∈ O(log n).

• The search algorithm for a red-black tree is the same as that for a

binary search tree.

• By the above theorem, searching takes O(log n) time
8

… … … … …

h*

h ≤ 2h*
T*

Consider the shortest path (left)

and longest path (right) from the

root to an external node.

Insertion
• Use insertion algorithm for binary search trees and color red the newly

inserted node z, unless it’s the root.

– we preserve the root, external, and depth properties

– if the parent v of z is black, we also preserve the internal property

and we are done

Red-Black Trees 9

6

3 8

6

3 8

4

z

v v

z

Insertion
• Use insertion algorithm for binary search trees and color red the newly

inserted node z, unless it’s the root.

– we preserve the root, external, and depth properties

– if the parent v of z is black, we also preserve the internal property

and we are done

– if the parent v of z is red, we have a double red (a violation of the

internal property), which requires a reorganization of the tree

• Ex: Insert 4 causes a double red

Red-Black Trees 10

6

3 8

6

3 8

4

z

v v

z

Fixing a Double Red

Consider a double red with child z and parent v, and let w be the sibling of v

• Case 1: w is black

• Case 2: w is red

Red-Black Trees 11

4

6

7
z

vw
2

4

6

7
z

vw
2

Restructuring

Recoloring

Note: pictures with dangling edges are a

visualization of a small portion of larger tree

Restructuring

Red-Black Trees 12

Consider a double red with child z and parent v and let w be the sibling of v.

Let u be the parent of v.

1. Relabel nodes z, v, u temporarily as a, b, c so that a, b, c will be visited

in this order by an inorder tree traversal.

2. Replace u with the node labeled b (colored black). Make nodes a and c

the left and right child of b (each colored red).

4

6

7
z

vw
2

u

4

6

7

b

c

w
2

a

a=u

b=z

c=v

Restructuring

Red-Black Trees 13

2

4

6

2 6

4

There are four restructuring configurations depending on the in-order

traversal of nodes z, v, u

6

2

4

6

4

2

2

6

4

u u u u
v

v v v

z z z z

u, z, v v, z, u z, v, u u, v, z
Inorder

traversal:

Fixing a Double Red

Consider a double red with child z and parent v, and let w be the sibling of v

• Case 1: w is black

• Case 2: w is red

Red-Black Trees 14

4

6

7
z

vw
2

4

6

7
z

vw
2

Restructuring

Recoloring

Recoloring
Consider a double red with child z and parent v, and let w be the sibling of v.

Let u be the parent of v.

1. Color v and w black.

2. Color u red, unless it’s the root.

3. If the double-red problem reappears at u, then repeat the process for
fixing two reds at u (either with restructuring or recoloring).

Fixes problem locally, but can propagate double-red problem up the tree.

Red-Black Trees 15

4

6

7
z

vw
2

4

6

7
z

vw
2

u
u

5/8/2020 5:53 AM Red-Black Trees 16

Analysis of Insertion

• Recall that a red-black tree has

O(log n) height

• Step 1 takes O(log n) time

because we visit O(log n) nodes

• Step 2 takes O(1) time

• Step 3 takes O(log n) time

because we perform

– O(log n) recolorings, each

taking O(1) time, and

– at most one restructuring taking

O(1) time

• Thus, an insertion in a red-black

tree takes O(log n) time

Algorithm insertItem(k, o)

1. We search for key k to locate the
insertion node z

2. We add the new item (k, o) at
node z and color z red

3. while doubleRed(z)

if isBlack(sibling(parent(z)))

restructure(z)

return

else { sibling(parent(z) is red }

z recolor(z)

Deletion

• Use deletion algorithm for binary search trees so as to delete internal

node v and its external child w. Let r be the sibling of w.

– if v is red or r is red, then color r black and we are done.

Red-Black Trees 17

6

3 8

v

r w

6

3
r

6

3 8

v

r w

7

6

3 7
r

Deletion

• Use deletion algorithm for binary search trees so as to delete internal

node v and its external child w. Let r be the sibling of w.

– if v is red or r is red, then color r black and we are done.

– otherwise (v and r are black) we color r double black, which

requires a reorganization of the tree

• Ex: Delete 8 causes a double black

Red-Black Trees 18

6

3 8

4

v

r w

6

3

4

r

Fixing a Double Black
Let y be the sibling and x be the parent of the double black node. The

algorithm to fix a double black node considers three cases:

Case 1: y is black and has a red child z

• We perform a restructuring on y, x, z, and we are done

Red-Black Trees 19

6

3

4

ry

x

z

4

3

r

6

Fixing a Double Black
Let y be the sibling and x be the parent of the double black node. The

algorithm to fix a double black node considers three cases:

Case 1: y is black and has a red child z

• We perform a restructuring on y, x, z, and we are done

Case 2: y is black and its children are both black

• We perform a recoloring. Color r black, and y red.

– If x is red, color it black. Otherwise, color x double-black.

– This may propagate up the double black violation

Red-Black Trees 20

6

3

ry

x

z

6

3

ry

z

x

Fixing a Double Black
Let y be the sibling and x be the parent of the double black node. The

algorithm to fix a double black node considers three cases:

Case 1: y is black and has a red child z

• We perform a restructuring on y, x, z, and we are done

Case 2: y is black and its children are both black

• We perform a recoloring. Color r black, and y red.

– If x is red, color it black. Otherwise, color x double-black.

– This may propagate up the double black violation

Case 3: y is red

• We perform an adjustment, after which either Case 1 or Case 2 applies

Deletion in a red-black tree takes O(log n) time. 21

5/8/2020 5:53 AM Red-Black Trees 22

Red-Black Tree Reorganization

Insertion

(fix double red)
result

restructuring double red removed

recoloring double red removed or propagated up

Deletion

(fix double black)
result

restructuring double black removed

recoloring double black removed or propagated up

adjustment restructuring or recoloring follows

