## Divide and Conquer



## Outline / Reading

- Divide-and-conquer paradigm (5.2)
- Review Merge-sort (4.1.1)
- Recurrence Equations (5.2.1)
- Recursion trees
- Induction
- Iterative substitution
- Guess-and-test
- The master method
- Integer Multiplication (5.2.2)


## Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
- Divide: divide the input data in two or more disjoint subsets $S_{1}, S_{2}, \ldots$
- Recur: solve the subproblems recursively
- Conquer: combine the solutions for $S_{1}, S_{2}, \ldots$, into a solution for $S$
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations



## Merge Sort Review

Merge-sort on an input sequence $\boldsymbol{S}$ with $\boldsymbol{n}$ elements consists of three steps:

- Divide: partition $S$ into two sequences $S_{1}$ and $S_{2}$ of about $\boldsymbol{n} / 2$ elements each
- Recur: recursively sort $\boldsymbol{S}_{1}$ and $\boldsymbol{S}_{2}$
- Conquer: merge $S_{1}$ and $S_{2}$ into a unique sorted sequence

```
Algorithm mergeSort(S,C)
    Input sequence S with }n\mathrm{ elements, comparator }\boldsymbol{C
    Output sequence S sorted according to C
    if S.size() > 1
        (S},\mp@subsup{S}{2}{})\leftarrow\operatorname{partition(S,n/2)
        mergeSort( }\mp@subsup{S}{1}{},C
        mergeSort(S}\mp@subsup{S}{2}{},C
        S\leftarrowmerge(S
```


## Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with $\boldsymbol{n} / 2$ elements and implemented by means of a doubly linked list, takes at most $\boldsymbol{b} \boldsymbol{n}$ steps, for some constant $\boldsymbol{b}$.
- Likewise, the basis case ( $\boldsymbol{n}<2$ ) will take at most $\boldsymbol{b}$ steps.
- Therefore, if we let $\boldsymbol{T}(\boldsymbol{n})$ denote the running time of merge-sort:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n & \text { if } n \geq 2
\end{array}\right.
$$

- We can analyze the running time of merge-sort by finding a closed form solution to the above equation.
- That is, a solution that has $\boldsymbol{T}(\boldsymbol{n})$ only on the left-hand side.


## Recursion Tree

Draw the recursion tree for the recurrence relation and look for a pattern:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n & \text { if } n \geq 2
\end{array}\right.
$$



## Iterative Substitution

In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern, then prove it is true by induction:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+b n \\
& \left.=2\left(2 T\left(n / 2^{2}\right)\right)+b(n / 2)\right)+b n \\
& =2^{2} T\left(n / 2^{2}\right)+2 b n \\
& =2^{3} T\left(n / 2^{3}\right)+3 b n \\
& =2^{4} T\left(n / 2^{4}\right)+4 b n \\
& =\ldots \\
& =2^{i} T\left(n / 2^{i}\right)+i b n
\end{aligned}
$$

- Note that the base case, $T(n)=b$, case occurs when $2^{i}=n$. That is, $i=\log n$. So we have: $T(n)=b n+b n \log n$
- Once we prove this by induction, then $T(n)$ is $O(n \log n)$.


## Guess-and-Test Method

In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n \log n & \text { if } n \geq 2
\end{array}\right.
$$

- Guess \#1: $T(n) \leq c n \log n$.

$$
\begin{aligned}
T(n)= & 2 T(n / 2)+b n \log n \\
& 2(c(n / 2) \log (n / 2))+b n \log n \\
= & c n(\log n \quad \log 2)+b n \log n \\
= & c n \log n \quad c n+b n \log n
\end{aligned}
$$

- Wrong: we cannot make this last line be less than $c n \log n$


## Guess-and-Test Method (2)

Recall the recurrence equation:

$$
T(n)=\left\{\begin{array}{cc}
b & \text { if } n<2 \\
2 T(n / 2)+b n \log n & \text { if } n \geq 2
\end{array}\right.
$$

- Guess \#2: $\mathrm{T}(n) \leq c n \log ^{2} n$.

$$
\begin{aligned}
T(n)= & 2 T(n / 2)+b n \log n \\
& 2\left(c(n / 2) \log ^{2}(n / 2)\right)+b n \log n \\
= & c n(\log n \quad \log 2)^{2}+b n \log n \\
= & c n \log ^{2} n \quad 2 c n \log n+c n+b n \log n \\
& c n \log ^{2} n \quad \text { if } c>b .
\end{aligned}
$$

- So, $\mathrm{T}(n)$ is $O\left(n \log ^{2} n\right)$.

In general, to use this method, you need to have a good guess.

## Master Method

Many divide-and-conquer recurrence equations have the form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

## The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a}\right)$, then $T(n)$ is $\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\left(n^{\log _{b} a+}\right)$, then $T(n)$ is $(f(n))$, provided $a f(n / b) \leq f(n)$ for some $<1$.

## Master Method: Ex. 1

The form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

Example:

$$
T(n)=4 T(n / 2)+n
$$

Solution: $\log _{\mathrm{b}} \mathrm{a}=2$, so case 1 says $\mathrm{T}(\mathrm{n})$ is $\Theta\left(\mathrm{n}^{2}\right)$.

## Master Method: Ex. 2

The form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

Example:

$$
T(n)=2 T(n / 2)+n \log n
$$

Solution: $\log _{\mathrm{b}} \mathrm{a}=1$, so case 2 says $\mathrm{T}(\mathrm{n})$ is $\Theta\left(\mathrm{n} \log ^{2} \mathrm{n}\right)$.

## Master Method: Ex. 3

The form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

Example:

$$
T(n)=T(n / 3)+n \log n
$$

Solution: $\log _{b} a=0$, so case 3 says $T(n)$ is $\Theta(n \log n)$.

## Master Method: Ex. 4

The form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

Example:

$$
T(n)=8 T(n / 2)+n^{2}
$$

Solution: $\log _{\mathrm{b}} \mathrm{a}=3$, so case 1 says $\mathrm{T}(\mathrm{n})$ is $\Theta\left(\mathrm{n}^{3}\right)$.

## Master Method: Ex. 5

The form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

Example:

$$
T(n)=9 T(n / 3)+n^{3}
$$

Solution: $\log _{\mathrm{b}} \mathrm{a}=2$, so case 3 says $T(n)$ is $\Theta\left(n^{3}\right)$.

## Master Method: Ex. 6

The form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

Example:

$$
T(n)=T(n / 2)+1 \quad(\text { binary search })
$$

Solution: $\log _{b} \mathrm{a}=0$, so case 2 says $\mathrm{T}(\mathrm{n})$ is $\Theta(\log \mathrm{n})$.

## Master Method: Ex. 7

The form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.

Example:

$$
T(n)=2 T(n / 2)+\log n \quad \text { (heap construction) }
$$

Solution: $\log _{b} \mathrm{a}=1$, so case 1 says $\mathrm{T}(\mathrm{n})$ is $\Theta(\mathrm{n})$.

## Iterative Justification of the Master Theorem

Use iterative substitution to find a pattern:

$$
\begin{aligned}
T(n) & =a T(n / b)+f(n) \\
& \left.=a\left(a T\left(n / b^{2}\right)\right)+f(n / b)\right)+f(n) \\
& =a^{2} T\left(n / b^{2}\right)+a f(n / b)+f(n) \\
& =a^{3} T\left(n / b^{3}\right)+a^{2} f\left(n / b^{2}\right)+a f(n / b)+f(n) \\
& =\ldots
\end{aligned}
$$

$$
\left(\log _{b} n\right) 1
$$

$$
=a^{\log _{b} n} T(1)+\quad a^{i} f\left(n / b^{i}\right)
$$

$$
i=0
$$

$$
\left(\log _{b} n\right) 1
$$

$$
=n^{\log _{b} a} T(1)+\quad a^{i} f\left(n / b^{i}\right)
$$

$$
i=0
$$

We then distinguish the three cases as

- Case 1: The first term is dominant
- Case 2: Each part of the summation is equally dominant
- Case 3: The second term is dominant
(


## Integer Multiplication

Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits

$$
\begin{aligned}
& I=I_{h} 2^{n / 2}+I_{l} \\
& J=J_{h} 2^{n / 2}+J_{l}
\end{aligned}
$$

- We can then define I*J by multiplying the parts and adding:

$$
\begin{aligned}
I^{*} J & =\left(I_{h} 2^{n / 2}+I_{l}\right) *\left(J_{h} 2^{n / 2}+J_{l}\right) \\
& =I_{h} J_{h} 2^{n}+I_{h} J_{l} 2^{n / 2}+I_{l} J_{h} 2^{n / 2}+I_{l} J_{l}
\end{aligned}
$$

- So, $T(n)=4 T(n / 2)+n$, which implies $T(n)$ is $\Theta\left(n^{2}\right)$.
- But that is no better than the algorithm we learned in grade school.


## Improved Integer Multiplication

Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits

$$
\begin{aligned}
& I=I_{h} 2^{n / 2}+I_{l} \\
& J=J_{h} 2^{n / 2}+J_{l}
\end{aligned}
$$

- Observe that there is a different way to multiply parts:

$$
\begin{aligned}
I^{*} J & =I_{h} J_{h} 2^{n}+\left[\left(I_{h}-I_{l}\right)\left(J_{l}-J_{h}\right)+I_{h} J_{h}+I_{l} J_{l}\right] 2^{n / 2}+I_{l} J_{l} \\
& =I_{h} J_{h} 2^{n}+\left[\left(I_{h} J_{l}-I_{l} J_{l}-I_{h} J_{h}+I_{l} J_{h}\right)+I_{h} J_{h}+I_{l} J_{l}\right] 2^{n / 2}+I_{l} J_{l} \\
& =I_{h} J_{h} 2^{n}+\left(I_{h} J_{l}+I_{l} J_{h}\right) 2^{n / 2}+I_{l} J_{l}
\end{aligned}
$$

- So, $\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$, which implies $\mathrm{T}(\mathrm{n})$ is $\Theta\left(\mathrm{n}^{\log }{ }_{2}{ }^{3}\right)$.
- Thus, $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{1.585}\right)$.

