Introduction to Graphs

Graph

A graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ is a set V of vertices connected by an edge set E.

$$
\begin{aligned}
& V=\{a, b, c, d, e\} \\
& E=\{e 1, e 2, e 3, e 4, e 5, e 6\}=\{(b, c),(c, a),(a, b),(b, e),(e, d),(d, c)\}
\end{aligned}
$$

Graph Variations

Multi-Graph: Multiple edges between two vertices.
Directed: Edges have a direction.
Weighted: Vertices and/or edges have weights.
Simple: No multiple edges, no loops.

Multi-graph

Directed

Weighted Undirected

Simple Undirected

Graph Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases

- Entity-relationship diagram

Examples

- Flight graph: A vertex represents an airport and an edge represents a flight route between two airports and stores the mileage of the route (edge).
- Social networks (like Facebook): A vertex is user, and two vertices are connected by an edge if and only they are friends.
- Road network: A vertex is a place(point, city), and an edge represent the road between two places.
- Collaboration graphs: Vertices in these graphs correspond to authors of papers, and they are connected by an edge whenever the corresponding authors co-authored an article.
- Web graphs: Vertices correspond to web pages and two vertices are connected by an edge if the web page corresponding to at least one of them has a hyperlink to the other.

Undirected and Directed graphs

Simple Undirected Graph

A Simple undirected graph is a set of vertices that are connected by the set of edges, where edges are an unordered pair of distinct vertices.

- In a simple undirected graph both multiple edges and loops are not allowed.

Directed Graph

A directed graph (or digraph) (V, E) consists of a nonempty set of vertices V and a set of directed edges (or arcs) E. Each directed edge is associated with an ordered pair of vertices. The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.

Simple Undirected Graphs

- Two vertices u and v are called adjacent (or neighbors) in undirected graph G if u and v are endpoints of an edge e of G. Such an edge e is called incident with the vertices u and v and e is said to connect u and v.

- w is adjacent with u, v and y but not with x and z.
- y is adjacent with x and w but not u, v and z.

Simple Undirected Graphs

- Given a graph $G=(V, E)$
- The open neighborhood $N(v)=\{u \in V \mid u \neq v, u v \in E\}$ of a vertex v is the set of all vertices adjacent to v (not including v).
- The closed neighborhood $N[v]=N(v) \cup\{v\}$ includes v.

- $N(w)=\{u, v, y\}$
- $N[w]=\{u, v, y, w\}$
- $N(y)=\{w, x\}$

Simple Undirected Graphs - Degree

- The degree of a vertex v is the number of incident edges, denoted by $\operatorname{deg}(v)$.

- $\operatorname{deg}(w)=3$
- $\operatorname{deg}(z)=1$
- $\operatorname{deg}(y)=2$

A vertex of degree one is called pendant. Consequently, a pendant vertex is adjacent to exactly one vertex.

- Vertex \mathbf{z} is pendant.

Degree of vertices

- Let $G=(V, E)$ be a simple undirected graph, Then:

$$
\text { Lemma } \sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

- If G is directed graph, Then:

$$
\text { Lemma } \quad \sum_{v \in V} \operatorname{indeg}(v)=\sum_{v \in V} \operatorname{outdeg}(v)=|E|
$$

Path

- Path: Is a sequence of adjacent vertices.
- The length of a path from a vertex v to a vertex u is the number of edges in the path.
- A path \mathbf{P} of length l is sequence of $l+1$ adjacent vertices.
- A path is simple if all vertices are different.

Path: (x, w, v, u, w, z)

Simple Path: ($\mathrm{x}, \mathrm{w}, \mathrm{v}, \mathrm{u}$)

Shortest Paths

- A Shortest path between two vertices u and v is path with the minimum number of edges.

A Path (x, w, v, u) is a simple path between x and u, but not shortest.

A Path (x, w, u) is a shortest path between x and u.

Distance

- Distance: The distance $\mathbf{d}(\mathbf{u}, \mathbf{v})$ from a vertex u to a vertex v in a graph G is the shortest path (minimum number of edges) from u to v. It is a shortest path length from u to v.

$$
\begin{aligned}
& d(u, v)=2 \\
& d(y, w)=1
\end{aligned}
$$

Connectedness

- Vertices v, w are connected if and only if there is a path starting at v and ending at w.
- A graph is connected iff every pair of vertices are connected. So a graph is connected if and only if it has only 1 connected component.
- Every graph consists of separate connected pieces called connected components

3 connected components

Cycle

- A cycle is a path that begins and ends with the same vertex.
- A cycle is simple, if it doesn' \dagger cross itself.

Cycle
(u,v,w,x,y,w,u)

Simple Cycle (u,v,x,y,w,u)

Simple Cycle (b,c,d)

Properties

Property 1. In an undirected graph with no self-loops and no multiple edges

$$
m \leq n(n-1) / 2
$$

Proof: each vertex has degree at most ($n-1$).

Property 2. A tree with \boldsymbol{n} vertices has $n-1$ edges.
$>$ So, $n \leq m \leq \frac{n(n-1)}{2}$

Data Structures for graphs (Graph Representation)

- Structures to represent a graph:

1. Edge List
2. Adjacency List
3. Adjacency Matrix

Edge List

- One simple way to represent a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is just a list, or array, of E edges, which we call an edge list.

Edge List:

$$
\{(u, v),(u, w),(v, w),(w, z),(w, y),(w, x),(z, y),(y, x)\}
$$

- Space Complexity: O(E)

Adjacency List Example

Undirected Graph

directed Graph

Adjacency list

Adjacency list

- The adjacency-list representation of a graph $G=(V, E)$ consists of an array Adj of \checkmark lists, one for each vertex in \vee.
- For each $u \in V$, the adjacency list $\operatorname{Adj}[u]$ contains all the vertices such that there is an edge $(u, v) \in E$.
- Adj[u] consists of all the vertices adjacent to u in G .
- Space Complexity: O(V+E)

Adjacency Matrix

Undirected Graph

directed Graph

Adjacency Matrix

	1	2	3	4	5
	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency Matrix

	1	2	3	4	5		6
1	0	1	0	1	0		0
2	0	0	0	0			0
3	0	0	0	0			1
4	0	1	0	0			0
5	0	0	0	1			0
6	0	0	0	0	0		1

- The adjacency-matrix representation of a graph $G=(V, E)$ consists of a VXV matrix (2-Dimensional array Ar) such that:
- $\operatorname{Ar}[i, j]=1$ if (i, j) is an edge
- Otherwise $\operatorname{Ar}[i, j]=0$
- Space Complexity: $O\left(V^{2}\right)$

Main Methods of the Graph ADT

Accessor methods

- aVertex()
- incidentEdges(v)
- endVertices(e)
- isDirected(e)
- origin(e)
- destination(e)
- opposite(v, e)
- areAdjacent(v, w)

Update methods

- insertVertex(o)
- insertEdge(v, w, o)
- insertDirectedEdge(v, w, o)
- removeVertex(v)
- removeEdge(e)

Generic methods

- numVertices()
- numEdges()
- vertices()
- edges()

Asymptotic Performance

\boldsymbol{n} vertices, \boldsymbol{m} edges no parallel edges no selfloops Bounds are "big-Oh"	Edge List	Adjacency List	Adjacency Matrix
Space	$\boldsymbol{n + m}$	$\boldsymbol{n}+\boldsymbol{m}$	\boldsymbol{n}^{2}
incidentEdges (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}
areAdjacent $(\boldsymbol{v}, \boldsymbol{w})$	\boldsymbol{m}	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	1
insertVertex (\boldsymbol{o})	1	1	\boldsymbol{n}^{2}
insertEdge(v, w, $\boldsymbol{o})$	1	1	1
removeVertex (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}^{2}
removeEdge (\boldsymbol{e})	1	1	1

