Infroduction to Graphs

Graph Variations

Multi-Graph: Multiple edges between two vertices.
Directed: Edges have a direction.

Weighted: Vertices and/or edges have weights.
Simple: No multiple edges, no loops.

ol i

Multi-graph Directed Weighted Undirected Simple Undirected

Graph Applications

» [Flecfronic circuits
= Printed circuit board
= |ntegrated circuit

= Transportation networks
= Highway network

= Flight network brown.edu = |
[o] [co0000] [o0]

lelc==atal qwest.net

» Computer networks
= Local area network
= |[nternet
= Web

» Databases
= Enfity-relationship diagram

Examples

- FIi?h’r graph: A vertex represents an airport and an edge represents
a flight route between two airports and stores the mileage of the

route (edge).

» Social networks (like Facebook): A vertex is user, and two vertices
are connected by an edge if and only they are friends.

» Road network: A vertex is a place(point, city), and an edge
represent the road between two places.

» Collaboration graphs: Vertices in these graphs correspond 1o
authors of papers, and they are connected by an edge whenever
the corresponding authors co-authored an arficle.

» Web graphs: Vertices correspond to web pages and two vertices
are connected by an edge if the web page corresponding to at
least one of them has a hyperlink to the other.

Undirected and Directed graphs

Simple Undirected Graph

A Simple undirected graph is a set of vertices that are connected by the set of
edges, where edges are an unordered pair of distinct vertices.

= |n asimple undirected graph both multiple edges and loops are not allowed.

Directed Graph

A directed graph (or digraph) (V ,E) consists of a nonempty set of vertices V and a
set of directed edges (or arcs) E. Each directed edge is associated with an ordered
pair of vertices. The directed edge associated with the ordered pair (u, v) is said to
start at u and end at v.

Simple Undirected Graphs

» Two verfices u and v are called adjacent (or neighbors) in
undirected graph G if u and v are endpoints of an edge e of G.
Such an edge e is called incident with the vertices u and v and e is
said to connect u and v.

u

= wis adjacent with u, v and y but not with x and z.
= yis adjacent with x and w but not u, v and z.

Simple Undirected Graphs
‘=Gvenagaphé= v.B)

= The open neighborhood N(v) ={u €V |u # v,uv € E} of a vertex v is the set of
all vertices adjacent to v (not including v).

= The closed neighborhood N[v] = N(v) U {v}includes v.

u
W v " N(W) = {u,v,y}
" Nlw] = {u,v,y,w}
z " N(y) = {w,x}

Simple Undirected Graphs - Degree

» The degree of a vertex v is the number of incident edges, denoted

by deg(v).
L
w v = deg(w) =3
. = deg(z) =1
= deg(y) =2
y X

A vertex of degree one is called pendant. Consequently, a pendant
vertex is adjacent to exactly one vertex.
* Vertex z is pendant.

Degree of vertices

et ¢ = (V,E) be asimple undirected graph, Then:

» |{ G is directed graph, Then:

» Path: |s a sequence of adjacent verfices.

= The length of a path from a vertex v to a vertex u is the number of edges in the
path.

= A path P of length L is sequence of | + 1 adjacent vertices.

» A path is simple if all verfices are different.

<
E U
Path: (x,w,v,u,w.,z) y
U v v
:r
Y
u R z
u
& Simple Path: (x,w,v,u) y
w v
€T

11

Shortest Paths

» A Shortest path between two vertices u and v is path with the
minimum number of edges.

A 2
u
u A Path (x,w,v,u)is a simple y -
U path between x and u, but ’
U v not shortest.
.
Z
u
Y
A Path (x,w,u) is a shortest w v
path between x and u. T

12

Distance

» Distance: The distance d(u, v) from a vertex u to a vertex vin a
graph G is the shortest path (minimum number of edges) from u o v.
It is a shortest path length from u o v.

=
U
Y d(u,v) =2
w v d(y,w) =1
£

Il&)

Connectedness

» Vertices v, w are connected if and only if there is a path starting at v and ending at
W.

» A graph is connected iff every pair of verfices are connected. So a graph is
connected if and only if it has only 1 connected component.

» Fvery graph consists of separate connected pieces called connected components

10 11
1
H
20
4 6 9 8
s o7

3 connected components

14

» A cycle is a path that begins and ends with the same vertex.

» A cycleis simple, if it doesn’t cross itself.

A

y X y X d c

Cycle Simple Cycle Simple Cycle
(U V. WXy, W,U) (U,V.X,y,W,U) (b,c.d)

Properties

Property 1. In an undirected graph with no self-loops and no multiple
edges

m<n(n-1)/2
Proof: each vertex has degree at most (n—1).

Property 2. A tree with n vertices has n — 1 edges.

n(n—1)

> Soon<m<

Data Structures for graphs (Graph Representation)

» Sfructures to represent a graph:

1. Edge List
2. Adjacency List

3. Adjacency Matrix

Edge List

» One simple way to represent a graph G=(V,E) is just a list, or array,
of E edges, which we call an edge list.

Z
U
Y FEdge List:
w v {(w,v), (w,w), (v,w), W, z), w,y), (W, x),(z,y), (¥, %)}
£

» Space Complexity: O(E)

18

Adjacency List Example

Undirected Graph Adjacency list
O © 1 32 517 « The adjacency-list representation of a
2] 5 3 4]/ graph ¢ = (V, E) consists of an array Adj of
"0 3 > 4/ V lists, one for each vertexin V.
e 'B 4 - 2 5 =~ 3|/
S| a1 | 32|~ « Foreachu eV, the adjacency list Adj[u]
contains all the vertices such that there is
: : an edge (u,v) € E.
irected Graph Adjacency list ge (wv)
« Adj[u] consists of all the vertices adjacent
I 2| -4 [~ to uin G.
O—2 &) [5]
‘ ¥ 6] 5|~ « Space Complexity: O(V+E)
4 2 [
—0E 6D s[-E]
6 6|

19

Adjacency Matrix

0 © 1 2 3 4 5 « The adjacency-matrix
1o 1 0 0 1 representation of a graph
‘.9 2|10 1 11 G=(V,E) consists of a VXV matrix
53— 301010 (2-Dimensional array Ar) such
4 (0 1 1 O 1 that:
311 1 & 1 0O
irected Graph Adjacency Matrix Ar[i,jl=1if (i,j) is an edge
Y « Otherwise Ar[i,j]=0
1| 1 & 1 0 O
O—2 B 210 00 010 - Space Complexity: O(V?)
3(0 0 0 O 1 1
‘ 4 (0 1 0 0 0 O
(4} (5) (67 slo oo 10 0
6(0 0 0 0 O 1

Main Methods of the Graph ADT

| Accessor methods Update methods
» gVertex() » insertVertex(o)
» incidentEdges(v) » insertEdge(v, w, o)
» endVerfices(e) » insertDirectedEdge(v, w, o)
» sDirected(e) » removeVertex(v)
= origin(e) » removeEdge(e)
= desfination(e) Generic methods
» opposite(v, e) » numVertices|)
» areAdjacent(v, w) » numEdges()

» vertices|)

» cdges|)

Asymptotic Performance

n vertices, m edges

no parallel edges Edge Adjacency Adjacency
no self-loops List List Matrix
Bounds are “big-Oh”

Space n+m n+m n?
incidentEdges(v) m deg(v) n
areAdjacent (v, w) m | min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n?
insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n?
removeEdge(e) 1 1 1

22

Graphs

22

