
1

Introduction to Graphs

2

Graph

A graph 𝑮 = (𝑽, 𝑬) is a set 𝑉 of vertices connected by an edge set 𝐸.

𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

𝐸 = 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6 = { 𝑏, 𝑐 , 𝑐, 𝑎 , 𝑎, 𝑏 , 𝑏, 𝑒 , 𝑒, 𝑑 , 𝑑, 𝑐 }

3

Graph Variations

Multi-Graph: Multiple edges between two vertices.

Directed: Edges have a direction.

Weighted: Vertices and/or edges have weights.

Simple: No multiple edges, no loops.

Multi-graph Directed Weighted Undirected Simple Undirected

4
Graphs 4

John

David
Paul

brown.edu

cox.net

cs.brown.edu

att.net

qwest.net

math.brown.edu

cslab1bcslab1a

Graph Applications

 Electronic circuits

▪ Printed circuit board

▪ Integrated circuit

 Transportation networks

▪ Highway network

▪ Flight network

 Computer networks

▪ Local area network

▪ Internet

▪ Web

 Databases

▪ Entity-relationship diagram

5

Examples

 Flight graph: A vertex represents an airport and an edge represents
a flight route between two airports and stores the mileage of the
route (edge).

 Social networks (like Facebook): A vertex is user, and two vertices
are connected by an edge if and only they are friends.

 Road network: A vertex is a place(point, city), and an edge
represent the road between two places.

Collaboration graphs: Vertices in these graphs correspond to
authors of papers, and they are connected by an edge whenever
the corresponding authors co-authored an article.

Web graphs: Vertices correspond to web pages and two vertices
are connected by an edge if the web page corresponding to at
least one of them has a hyperlink to the other.

6

Undirected and Directed graphs

Simple Undirected Graph

A Simple undirected graph is a set of vertices that are connected by the set of

edges, where edges are an unordered pair of distinct vertices.

▪ In a simple undirected graph both multiple edges and loops are not allowed.

Directed Graph

A directed graph (or digraph) (V ,E) consists of a nonempty set of vertices V and a

set of directed edges (or arcs) E. Each directed edge is associated with an ordered

pair of vertices. The directed edge associated with the ordered pair (u, v) is said to

start at u and end at v.

7

Simple Undirected Graphs

 Two vertices u and v are called adjacent (or neighbors) in

undirected graph G if u and v are endpoints of an edge e of G.

Such an edge e is called incident with the vertices u and v and e is

said to connect u and v.

▪ 𝑤 is adjacent with 𝑢, 𝑣 and 𝑦 but not with 𝑥 and 𝑧.

▪ 𝑦 is adjacent with 𝑥 and 𝑤 but not 𝑢, 𝑣 and 𝑧.

8

Simple Undirected Graphs

Given a graph 𝐺 = (𝑉, 𝐸)

▪ The open neighborhood 𝑁 𝑣 = 𝑢 ∈ 𝑉 𝑢 ≠ 𝑣, 𝑢𝑣 ∈ 𝐸} of a vertex 𝑣 is the set of

all vertices adjacent to 𝑣 (not including 𝑣).

▪ The closed neighborhood 𝑁 𝑣 = 𝑁 𝑣 ∪ {𝑣} includes v.

▪ 𝑁(𝑤) = {𝑢, 𝑣, 𝑦}
▪ 𝑁[𝑤] = {𝑢, 𝑣, 𝑦, 𝑤}
▪ 𝑁(𝑦) = {𝑤, 𝑥}

9

Simple Undirected Graphs - Degree

 The degree of a vertex 𝑣 is the number of incident edges, denoted

by deg(𝑣).

▪ deg 𝑤 = 3
▪ deg 𝑧 = 1
▪ deg 𝑦 = 2

A vertex of degree one is called pendant. Consequently, a pendant

vertex is adjacent to exactly one vertex.

• Vertex z is pendant.

10

Degree of vertices

 Let 𝐺 = (𝑉, 𝐸) be a simple undirected graph, Then:

𝑣∈𝑉

deg 𝑣 = 2|𝐸|Lemma

 If G is directed graph, Then:

𝑣∈𝑉

indeg 𝑣 =

𝑣∈𝑉

outdeg 𝑣 = |𝐸|Lemma

11

Path

 Path: Is a sequence of adjacent vertices.

▪ The length of a path from a vertex 𝑣 to a vertex 𝑢 is the number of edges in the

path.

▪ A path P of length 𝑙 is sequence of 𝑙 + 1 adjacent vertices.

 A path is simple if all vertices are different.

Path: (x,w,v,u,w,z)

Simple Path: (x,w,v,u)

12

Shortest Paths

 A Shortest path between two vertices 𝑢 𝑎𝑛𝑑 𝑣 is path with the

minimum number of edges.

A Path (𝑥, 𝑤, 𝑣, 𝑢) is a simple

path between 𝑥 𝑎𝑛𝑑 𝑢, but

not shortest.

A Path (𝑥, 𝑤, 𝑢) is a shortest

path between 𝑥 𝑎𝑛𝑑 𝑢.

13

Distance

 Distance: The distance d(u, v) from a vertex u to a vertex v in a

graph G is the shortest path (minimum number of edges) from u to v.

It is a shortest path length from u to v.

𝑑(𝑢, 𝑣) = 2
𝑑(𝑦, 𝑤) = 1

14

3 connected components

Connectedness

 Vertices v, w are connected if and only if there is a path starting at v and ending at

w.

 A graph is connected iff every pair of vertices are connected. So a graph is

connected if and only if it has only 1 connected component.

 Every graph consists of separate connected pieces called connected components

15

Cycle

 A cycle is a path that begins and ends with the same vertex.

 A cycle is simple, if it doesn’t cross itself.

Cycle

(u,v,w,x,y,w,u)
Simple Cycle

(u,v,x,y,w,u)

a b

d c

e

f

Simple Cycle

(b,c,d)

16

Properties

Property 1. In an undirected graph with no self-loops and no multiple
edges

m n (n - 1)/2

Proof: each vertex has degree at most (n - 1).

Property 2. A tree with n vertices has n − 1 edges.

➢ So, 𝑛 ≤ 𝑚 ≤
𝑛(𝑛−1)

2

17

Data Structures for graphs (Graph Representation)

 Structures to represent a graph:

1. Edge List

2. Adjacency List

3. Adjacency Matrix

Graphs

17

18

Edge List

One simple way to represent a graph G=(V,E) is just a list, or array,

of E edges, which we call an edge list.

 Space Complexity: O(E)

Edge List:
{(𝑢, 𝑣), (𝑢, 𝑤), (𝑣, 𝑤), (𝑤, 𝑧), (𝑤, 𝑦), (𝑤, 𝑥), (𝑧, 𝑦), (𝑦, 𝑥)}

19

Adjacency List Example

Undirected Graph

Adjacency list

Adjacency list

directed Graph

• The adjacency-list representation of a

graph 𝐺 = (𝑉, 𝐸) consists of an array Adj of

V lists, one for each vertex in V.

• For each 𝑢 ∈ 𝑉 , the adjacency list 𝐴𝑑𝑗[𝑢]
contains all the vertices such that there is

an edge 𝑢, 𝑣 ∈ 𝐸.

• 𝑨𝒅𝒋[𝒖] consists of all the vertices adjacent

to 𝒖 in G.

• Space Complexity: O(V+E)

20

Adjacency Matrix

Undirected Graph

Adjacency Matrix

Adjacency Matrix

directed Graph

• The adjacency-matrix

representation of a graph

G=(V,E) consists of a VXV matrix

(2-Dimensional array Ar) such

that:

• Ar[i,j]=1 if (i,j) is an edge

• Otherwise Ar[i,j]=0

• Space Complexity: O(𝑽𝟐)

21
Graphs 21

Main Methods of the Graph ADT
Accessor methods

 aVertex()

 incidentEdges(v)

 endVertices(e)

 isDirected(e)

 origin(e)

 destination(e)

 opposite(v, e)

 areAdjacent(v, w)

Update methods

 insertVertex(o)

 insertEdge(v, w, o)

 insertDirectedEdge(v, w, o)

 removeVertex(v)

 removeEdge(e)

Generic methods

 numVertices()

 numEdges()

 vertices()

 edges()

22Graphs
22

Asymptotic Performance

n vertices, m edges

no parallel edges

no self-loops

Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1

