Biconnectivity

Outline and Reading

Definitions (6.3.2)

- Separation vertices and edges
- Biconnected graph
- Biconnected components
- Equivalence classes
- Linked edges and link components

Algorithms (6.3.2)

- Auxiliary graph
- Proxy graph

Separation Edges and Vertices

Let \boldsymbol{G} be a connected graph

- A separation edge of \boldsymbol{G} is an edge whose removal disconnects \boldsymbol{G}. Ex: (DFW,LAX) is a separation edge
- A separation vertex of \boldsymbol{G} is a vertex whose removal disconnects \boldsymbol{G}. Ex: DFW, LGA and LAX are separation vertices

Applications:

- Separation edges and vertices represent single points of failure in a network and are critical to the operation of the network.

Biconnectivity

Biconnected Graph

Equivalent definitions of a biconnected graph G :

- Graph \boldsymbol{G} has no separation edges and no separation vertices.
- For any two vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G}, there are two disjoint simple paths between \boldsymbol{u} and \boldsymbol{v} (i.e., two simple paths between \boldsymbol{u} and \boldsymbol{v} that share no other vertices or edges).
- For any two vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G}, there is a simple cycle containing \boldsymbol{u} and \boldsymbol{v}.

Example:

Biconnected Components

- Biconnected component of a graph \boldsymbol{G}
- A maximal biconnected subgraph of \boldsymbol{G}, or
- A subgraph consisting of a separation edge of \boldsymbol{G} and its end vertices
- Interaction of biconnected components
- An edge belongs to exactly one biconnected component
- A nonseparation vertex belongs to exactly one biconnected component
- A separation vertex belongs to two or more biconnected components
- Example of a graph with four biconnected components:

Equivalence Classes

Given a set \boldsymbol{S}, a relation \boldsymbol{R} on \boldsymbol{S} is a set of ordered pairs of elements of \boldsymbol{S}, i.e., \boldsymbol{R} is a subset of $S \times S$

- An equivalence relation \boldsymbol{R} on \boldsymbol{S} satisfies the following properties

Reflexive: $\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{x})$ is true for each \boldsymbol{x}
Symmetric: $\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{R}(\boldsymbol{y}, \boldsymbol{x})$ for each $\boldsymbol{x}, \boldsymbol{y}$
Transitive: $\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y}) \wedge \boldsymbol{R}(\boldsymbol{y}, \boldsymbol{z}) \rightarrow \boldsymbol{R}(\boldsymbol{x}, \boldsymbol{z})$ for each $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$

- An equivalence relation \boldsymbol{R} on \boldsymbol{S} induces a partition of the elements of \boldsymbol{S} into equivalence classes

Example (connectivity relation among the vertices of a graph):

- Let \boldsymbol{V} be the set of vertices of a graph \boldsymbol{G}
- Define the relation $\boldsymbol{C}=\{(\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{V} \times \boldsymbol{V}$ such that \boldsymbol{G} has a path from \boldsymbol{v} to $\boldsymbol{w}\}$
- Relation \boldsymbol{C} is an equivalence relation
- The equivalence classes of relation \boldsymbol{C} are the vertices in each connected component of graph \boldsymbol{G}

Link Relation

Edges \boldsymbol{e} and \boldsymbol{f} of connected graph \boldsymbol{G} are linked if

- $\boldsymbol{e}=\boldsymbol{f}$, or
- \boldsymbol{G} has a simple cycle containing \boldsymbol{e} and \boldsymbol{f}

Theorem: The link relation on the edges of a graph is an equivalence relation.

Proof Sketch:

- The reflexive and symmetric properties follow from the definition
- For the transitive property, consider two simple cycles sharing an edge

Equivalence classes of linked edges:
$\{\boldsymbol{a}\}\{\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}\}\{\boldsymbol{g}, \boldsymbol{i}, \boldsymbol{j}\}$
Equivalence classes of link
$\{\boldsymbol{a}\}\{\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}\}\{\boldsymbol{g}, \boldsymbol{i}, \boldsymbol{j}\}$

Link Components

The link components of a connected graph \boldsymbol{G} are the equivalence classes of edges with respect to the link relation

A biconnected component of \boldsymbol{G} is the subgraph of \boldsymbol{G} induced by an equivalence class of linked edges

- A separation edge is a single-element equivalence class of linked edges
- A separation vertex has incident edges in at least two distinct equivalence classes of linked edge

Auxiliary Graph

Auxiliary graph \boldsymbol{B} for a connected graph \boldsymbol{G}

- Associated with a DFS traversal of \boldsymbol{G}
- The vertices of \boldsymbol{B} are the edges of \boldsymbol{G}
- For each back edge \boldsymbol{e} of $\boldsymbol{G}, \boldsymbol{B}$ has edges $\left(\boldsymbol{e}, \boldsymbol{f}_{1}\right),\left(\boldsymbol{e}, f_{2}\right), \ldots,\left(\boldsymbol{e}, \boldsymbol{f}_{k}\right)$, where $\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots, \boldsymbol{f}_{\boldsymbol{k}}$ are the discovery edges of \boldsymbol{G} that form a simple cycle with \boldsymbol{e}

The connected components of B correspond to the link components of \boldsymbol{G}

DFS on graph \boldsymbol{G}

Auxiliary graph \boldsymbol{B}

Auxiliary Graph (cont.)

In the worst case, the number of edges of the auxiliary graph is proportional to $\boldsymbol{n m}$.

DFS on graph \boldsymbol{G}

Auxiliary graph \boldsymbol{B}

An Algorithm to Compute Biconnected Components

1. Perform DFS traversal on G
2. Compute auxiliary graph B
3. Compute connected components of B
4. For each connected component of B, output vertices of B (edges of G) as a link component of G

Running time is $O(n m)$. Why?
Can we do better?

DFS on graph \boldsymbol{G}

Auxiliary graph \boldsymbol{B}

Proxy Graph

```
Algorithm proxyGraph(G)
    Input connected graph \(\boldsymbol{G}\)
    Output proxy graph \(\boldsymbol{F}\) for \(\boldsymbol{G}\)
    \(F \leftarrow\) empty graph
    \(\operatorname{DFS}(G, s)\{\boldsymbol{s}\) is any vertex of \(\boldsymbol{G}\}\)
    for all discovery edges \(\boldsymbol{e}\) of \(\boldsymbol{G}\)
        F.insertVertex (e)
        setLabel(e, UNLINKED)
    for all vertices \(\boldsymbol{v}\) of \(\boldsymbol{G}\) in DFS visit order
        for all back edges \(\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})\)
            F.insertVertex(e)
            repeat \(\{\) add edges to F only as necessary \}
            \(f \leftarrow\) discovery edge with dest. \(\boldsymbol{u}\)
            F.insertEdge (e,f, \(\varnothing\) )
            if \(\operatorname{getLabel}(f)=\) UNLINKED
                setLabel(f, LINKED)
                \(u \leftarrow\) origin of edge \(f\)
            else
                \(u \leftarrow v\{\) ends the loop \}
            until \(u=v\)
    return \(F\)
```


DFS on graph \boldsymbol{G}

Proxy graph \boldsymbol{F}

Proxy seann (cont.)

Proxy graph \boldsymbol{F} for a connected graph \boldsymbol{G}

- Spanning forest of the auxiliary graph \boldsymbol{B}
- Has \boldsymbol{m} vertices and $\boldsymbol{O}(\boldsymbol{m})$ edges
- Can be constructed in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Its connected components (trees) correspond to the link components of \boldsymbol{G}

Given a graph \boldsymbol{G} with \boldsymbol{n} vertices and \boldsymbol{m} edges, we can compute the following in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time

- The biconnected components of \boldsymbol{G}
- The separation vertices of \boldsymbol{G}
- The separation edges of \boldsymbol{G}

DFS on graph \boldsymbol{G}

Proxy graph \boldsymbol{F}

