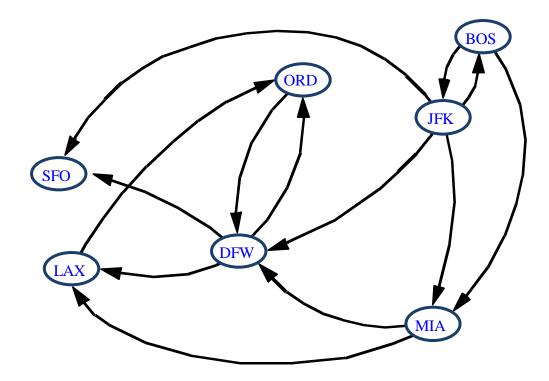
Directed Graphs (Digraphs)



Outline and Reading

Reachability (6.4.1)

- Directed DFS
- Strong connectivity

Transitive closure (6.4.2)

• The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAGs) (6.4.4)

• Topological Sorting

Digraphs

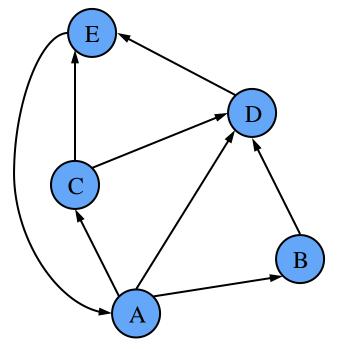
A **digraph** (short for "directed graph") is a graph whose edges are all directed

• Ex: Edge (*a*,*b*) goes from *a* to *b*, but not *b* to *a*.

Properties:

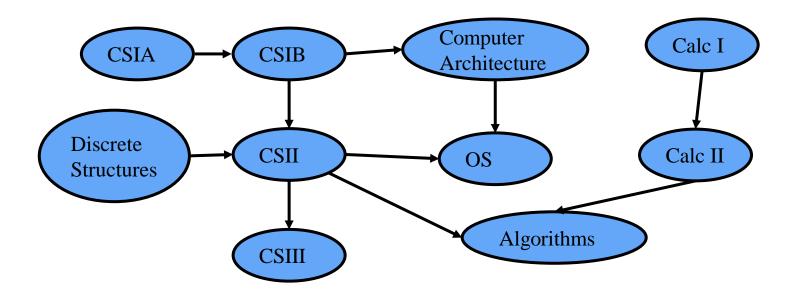
- If G is simple, $m \le n(n-1)$.
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of the sets of in-edges and out-edges in time proportional to their size.

Applications include one-way streets, flights, and task scheduling.



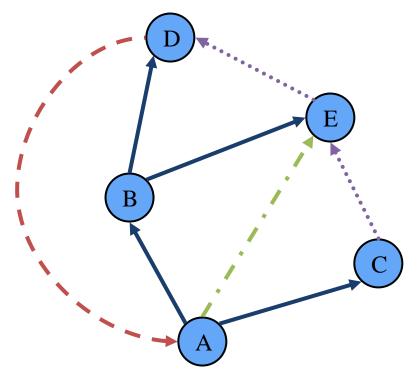
Digraph Application

Scheduling: edge (a,b) means task *a* must be completed before *b* can be started.



Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges



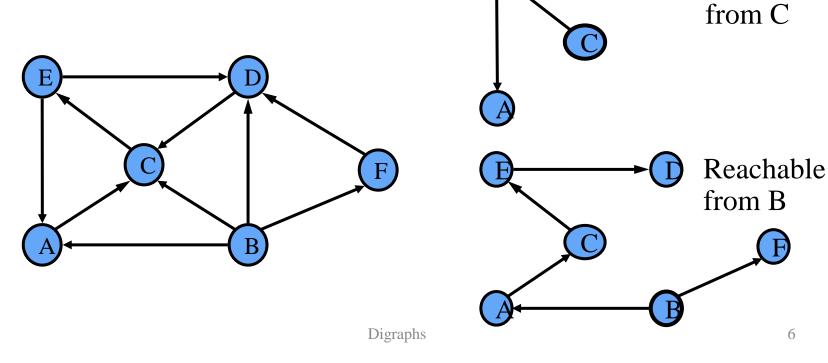
• A directed DFS starting at a vertex *s* determines the vertices reachable from *s*

Reachability

DFS tree rooted at *v*: vertices reachable from *v* via directed paths

Applications:

- Dead code detection/elimination
- Garbage collection

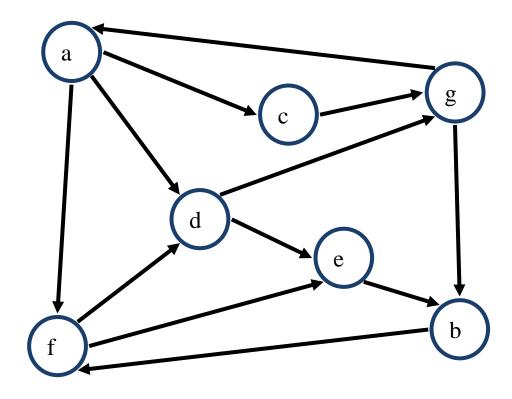


Reachable

Strong Connectivity

Each vertex can reach all other vertices

• How can we test if G is strongly connected?

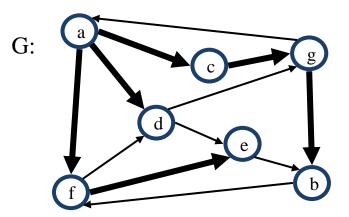


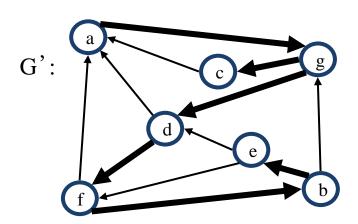
Strong Connectivity Algorithm

Determine if G is strongly connected

- Pick a vertex v in G
- Perform a DFS from *v* in *G*
 - If there's a w not visited, print "no"
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there's a *w* not visited, print "no"
 - Else, print "yes"

Running time: O(n+m).

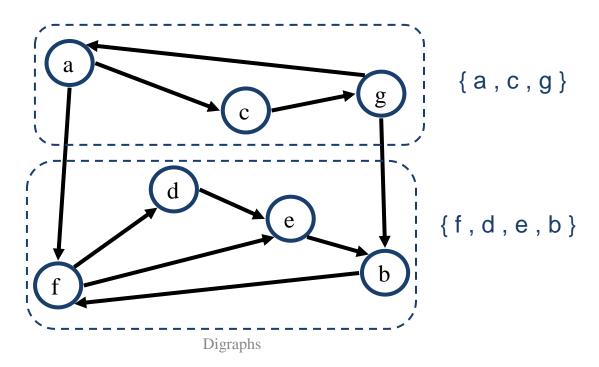




Strongly Connected Components

A strongly connected component is a maximal subgraph such that each vertex can reach all other vertices in the subgraph

• Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).

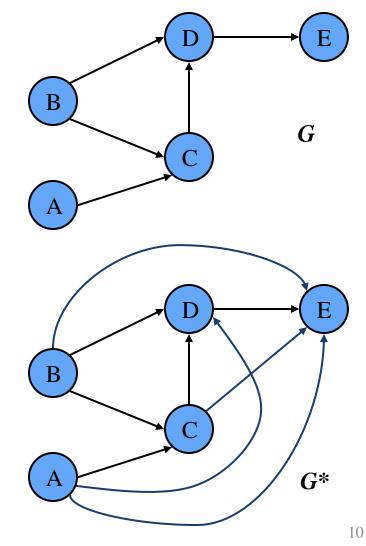


Transitive Closure

Given a digraph G, the **transitive closure** of G is the digraph G^* such that

- *G** has the same vertices as *G*
- if G has a directed path from u to v
 (u ≠ v), G* has a directed edge from u to v

The transitive closure provides reachability information about a digraph.

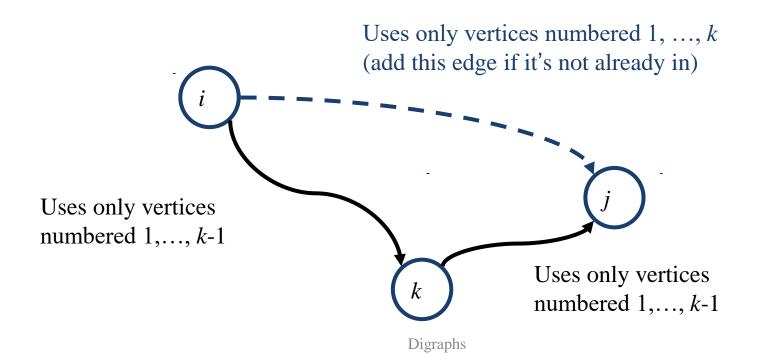


Computing the Transitive Closure

- One idea: perform DFS starting at each vertex
 - This is O(n(n+m)) time
 - Recall that *m* is $O(n^2)$
- Second idea: use dynamic programming
 - Observe that if there's a way to get from A to B and from B to C, then there's a way to get from A to C.
 - This becomes part of our subproblem characterization
 - This is known as **Floyd-Warshall's algorithm**, which runs in $O(n^3)$ time using an adjacency matrix

Floyd-Warshall Transitive Closure

- Number the vertices 1, 2, ..., *n*.
- Consider paths that use only vertices numbered 1, 2, ..., *k*, as intermediate vertices:



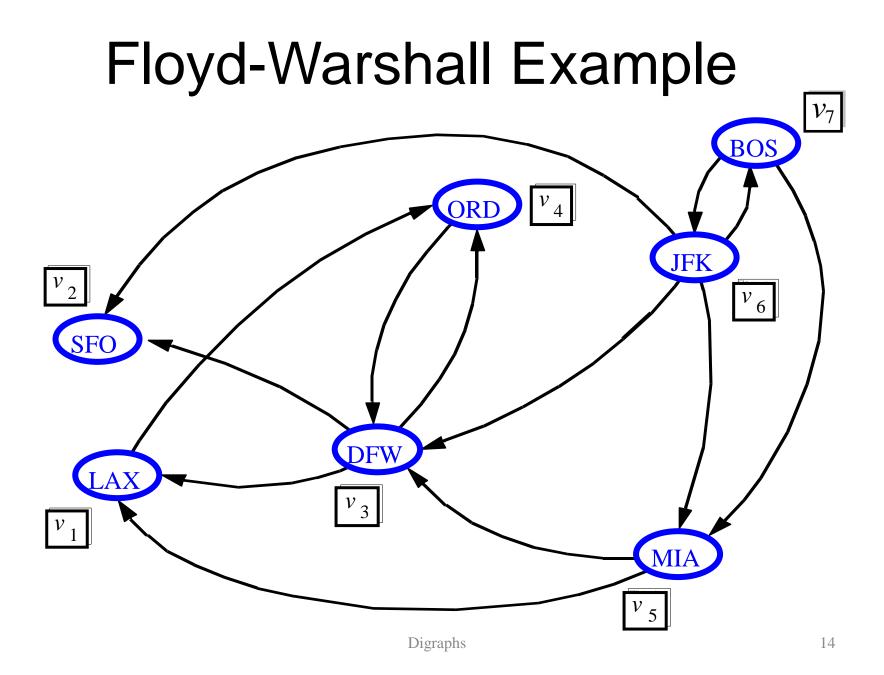
Floyd-Warshall's Algorithm

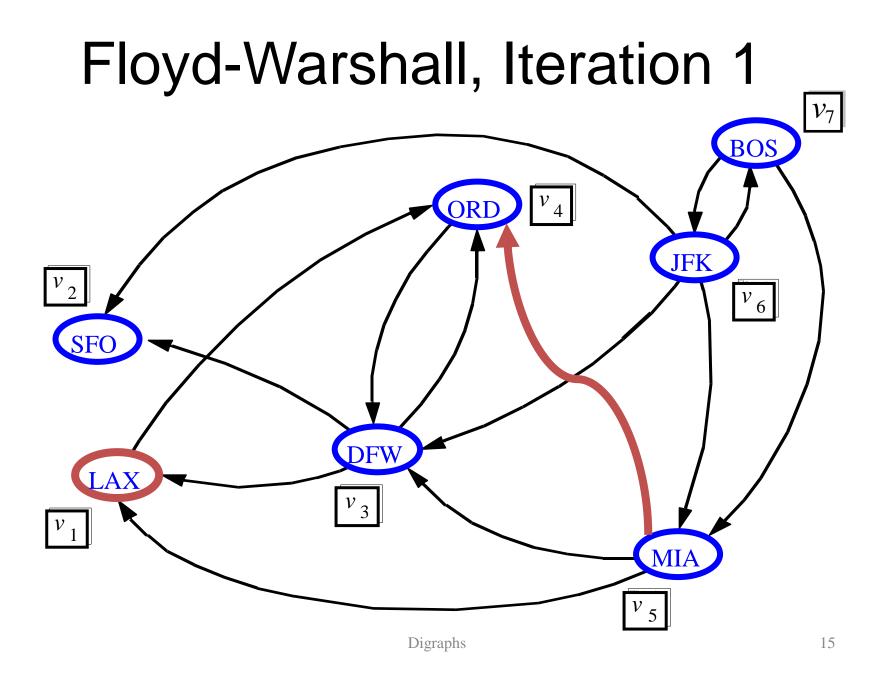
Numbers the vertices of G as v₁,
 ..., v_n and computes a series of digraphs G₀, ..., G_n

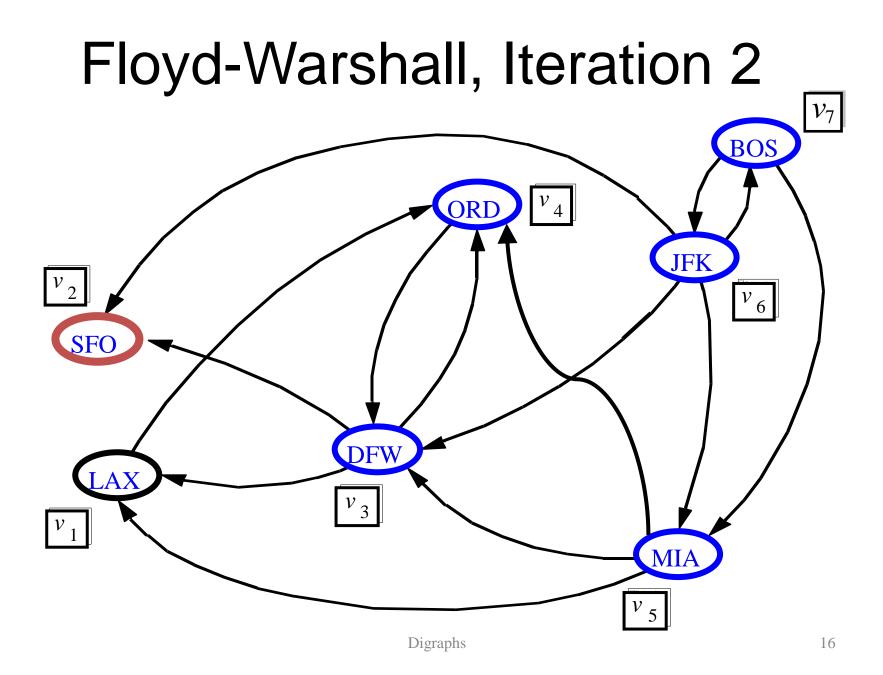
 $- G_0 = G$

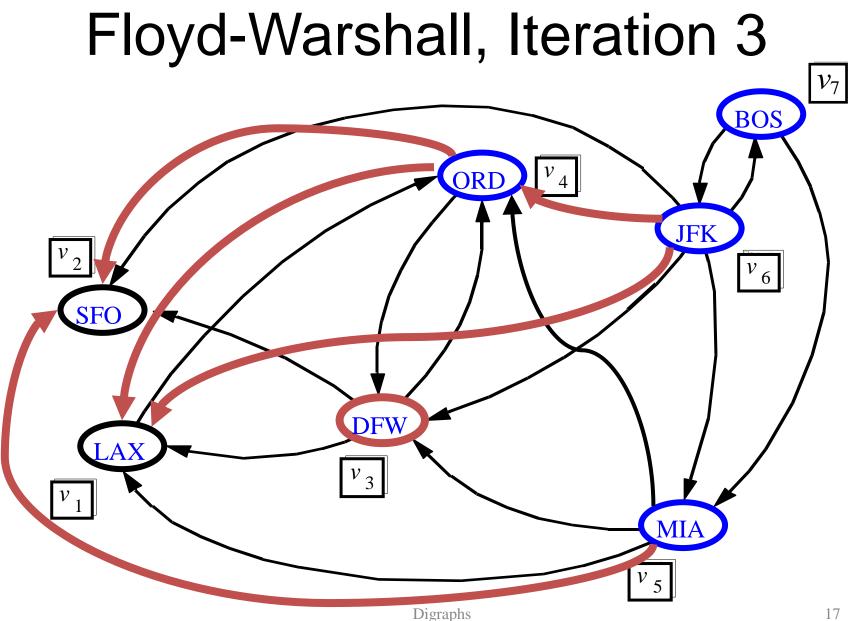
- G_k has a directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in the set $\{v_1, ..., v_k\}$
- We have that $G_n = G^*$
- In phase k, digraph G_k is computed from G_{k-1}
- Running time: O(n³), assuming areAdjacent is O(1) (e.g., adjacency matrix)

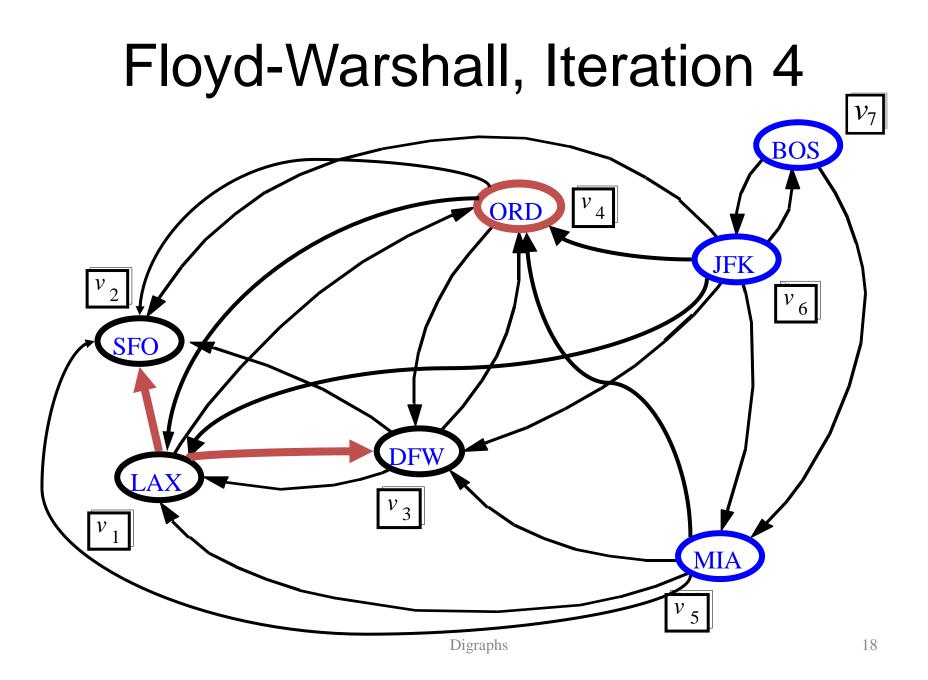
Algorithm *FloydWarshall(G)* Input digraph *G* Output transitive closure G* of G $i \leftarrow 1$ for all $v \in G.vertices()$ denote v as v_i $i \leftarrow i + 1$ $G_0 \leftarrow G$ for $k \leftarrow 1$ to *n* do $G_k \leftarrow G_{k-1}$ for $i \leftarrow 1$ to $n \ (i \neq k)$ do for $j \leftarrow 1$ to $n \ (j \neq i, k)$ do if G_{k-1} .areAdjacent $(v_i, v_k) \land$ G_{k-1} .areAdjacent(v_k, v_j) if $\neg G_k$. are Adjacent (v_i, v_j) G_k .insertDirectedEdge(v_i, v_j, k) return G_n

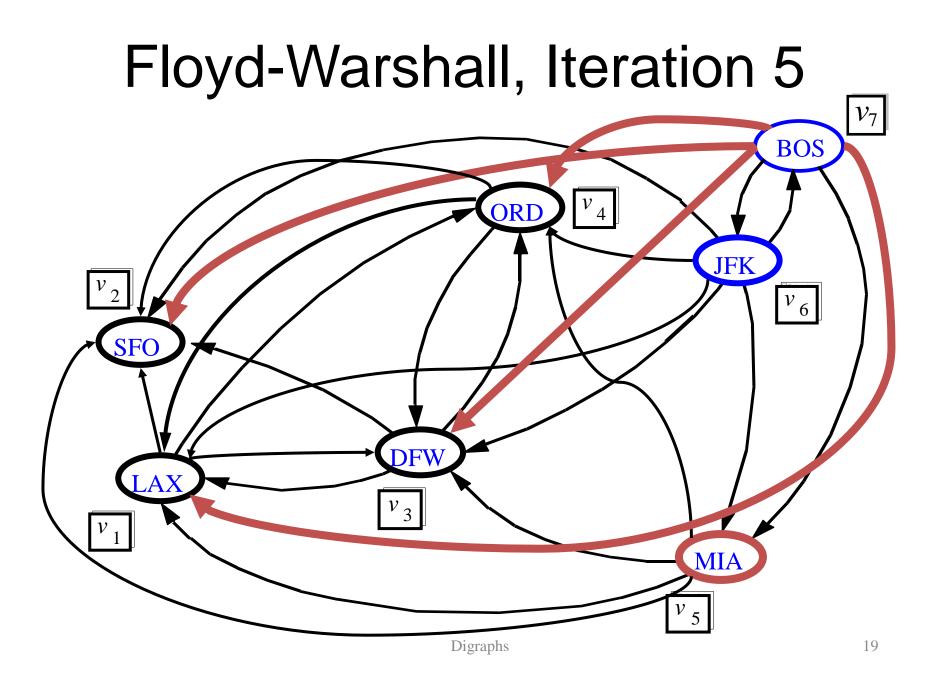


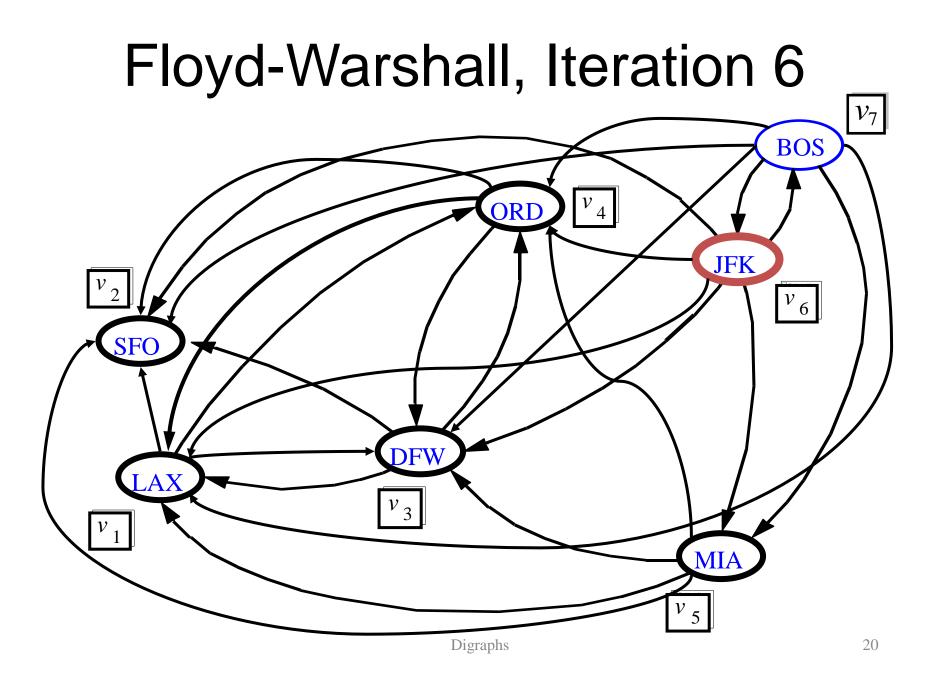


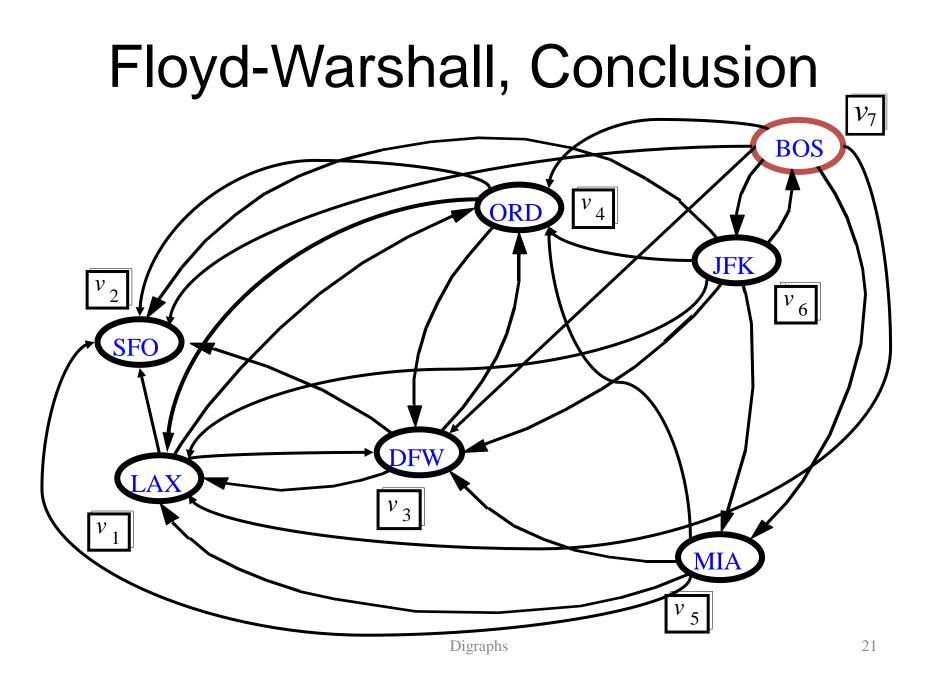












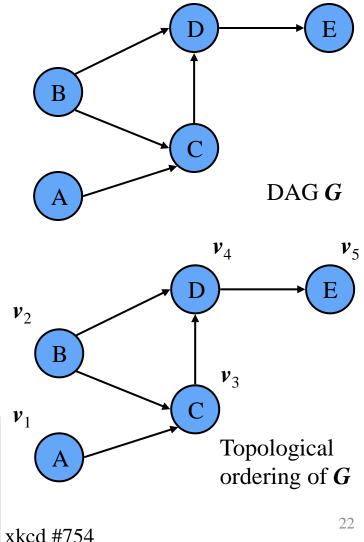
DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering $v_1, ..., v_n$ of the vertices such that for every edge (v_i, v_j) , we have i < j
- Ex: in a task scheduling digraph, a topological order is a task sequence that satisfies the precedence constraints

Theorem

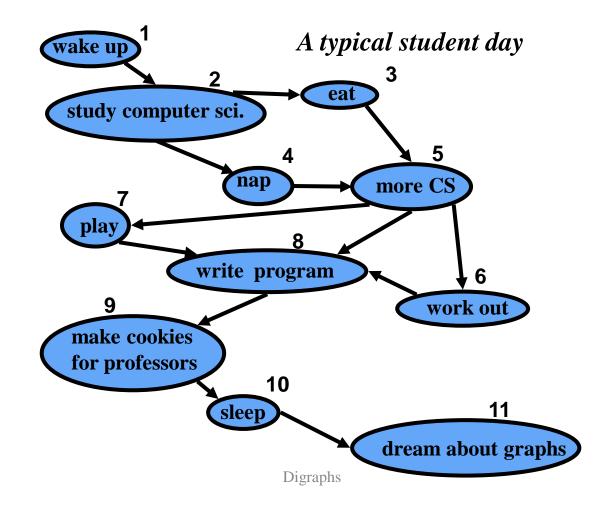
A digraph admits a topological ordering if and only if it is a DAG

Γ	PAGE 3				
	DEPARTMENT	COURSE	DESCRIPTION	PREREQS	
	COMPUTER SCIENCE	CP5C 432	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432	x
	A	Contra Lum	Wards columnities provided		JΛ



Topological Sorting

Number vertices, so that (u,v) in E implies u < v



Algorithm for Topological Sorting

• Note: This algorithm is different than the one in Goodrich-Tamassia

```
Method TopologicalSort(G)

H \leftarrow G // Temporary copy of G

n \leftarrow G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v \leftarrow n

n \leftarrow n - 1

Remove v from H
```

• Running time: O(n + m). How...?

Topological Sorting Algorithm using DFS

Simulate the algorithm by using DFS

Algorithm topologicalDFS(G) Input dag G Output topological ordering of G $n \leftarrow G.numVertices()$ for all $u \in G.vertices()$ setLabel(u, UNEXPLORED)for all $e \in G.edges()$ setLabel(e, UNEXPLORED)for all $v \in G.vertices()$ if getLabel(v) = UNEXPLOREDtopologicalDFS(G, v)

• O(n+m) time.

Algorithm topological DFS(G, v) **Input** graph *G* and a start vertex *v* of *G* Output labeling of the vertices of G in the connected component of vsetLabel(v, VISITED) for all $e \in G.incidentEdges(v)$ **if** *getLabel*(*e*) = *UNEXPLORED* $w \leftarrow opposite(v,e)$ **if** *getLabel*(*w*) = *UNEXPLORED* setLabel(e, DISCOVERY) *topologicalDFS*(*G*, *w*) else {*e* is a forward or cross edge} Label *v* with topological number *n*

 $n \leftarrow n - 1$

