## Shortest Paths



## Outline and Reading

- Weighted graphs (7.1)
- Shortest path problem
- Shortest path properties
- Dijkstra's algorithm (7.1.1)
- Algorithm
- Edge relaxation
- The Bellman-Ford algorithm (7.1.2)
- Shortest paths in DAGs (7.1.3)
- All-pairs shortest paths (7.2.1)


## Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports



## Shortest Path Problem

- Given a weighted graph and two vertices $\boldsymbol{u}$ and $\boldsymbol{v}$, we want to find a path of minimum total weight between $\boldsymbol{u}$ and $\boldsymbol{v}$.
- Length of a path is the sum of the weights of its edges
- Example: shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations
- Driving directions



## Shortest Path Problem

Property 1. A subpath of a shortest path is itself a shortest path.

Property 2. There is a tree of shortest paths from a start vertex to all other vertices.

- Example: tree of shortest paths from Providence



## Dijkstra’ s Algorithm

The distance of vertex $\boldsymbol{v}$ from $\boldsymbol{s}$ is the length of a shortest path between $\boldsymbol{s}$ and $\boldsymbol{v}$.
Dijkstra's algorithm computes the distances of all the vertices from a given start vertex $\boldsymbol{s}$.

- Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative

Idea:

- Grow a "cloud" of vertices, beginning with $\boldsymbol{s}$ and eventually covering all vertices
- Store with each vertex $\boldsymbol{v}$ a label $d(v)$ representing the distance of $\boldsymbol{v}$ from $\boldsymbol{s}$ in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- Add to the cloud the vertex $\boldsymbol{u}$ outside the cloud with the smallest distance label, $\boldsymbol{d}(\boldsymbol{u})$
- Update the labels of the vertices adjacent to $\boldsymbol{u}$


## Edge Relaxation

Consider an edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{z})$ such that

- u is the vertex most recently added to the cloud
- $z$ is not in the cloud

The relaxation of edge $\boldsymbol{e}$ updates distance $\boldsymbol{d}(\boldsymbol{z})$ as follows:

$$
d(z) \leftarrow \min \{d(z), d(u)+\text { weight }(e)\}
$$



## Example



## Example (cont.)



## Dijkstra’ s Algorithm

A priority queue stores the vertices outside the cloud

- Key: distance
- Element: vertex

Locator-based methods

- insert ( $k, e$ ) returns a locator
- replaceKey (l,k) changes the key of an item

We store two labels with each vertex:

- Distance ( $d(v)$ label)
- locator in priority queue

```
Algorithm DijkstraDistances( \(\boldsymbol{G}, \boldsymbol{s}\) )
\(Q \leftarrow\) new heap-based priority queue
    for all \(v \in\) G.vertices()
    if \(v=s\)
        setDistance (v, 0)
    else
        setDistance \((v, \infty)\)
    \(l \leftarrow\) Q.insert(getDistance(v), v)
    setLocator(v,l)
while \(\neg Q . i s E m p t y()\)
    \(u \leftarrow\) Q.removeMin()
    for all \(e \in\) G.incidentEdges(u)
        \(\{\) relax edge \(\boldsymbol{e}\) \}
        \(z \leftarrow\) G.opposite (u,e)
        \(r \leftarrow\) getDistance \((u)+\) weight \((e)\)
        if \(r<\) getDistance \((z)\)
        setDistance(z,r)
        Q.replaceKey(getLocator(z),r)
```


## Analysis

- Graph operations
- Method incidentEdges is called once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $\boldsymbol{z} \boldsymbol{O}(\operatorname{deg}(\boldsymbol{z}))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- The key of a vertex in the priority queue is modified at most $\operatorname{deg}(\boldsymbol{w})$ times, where each key change takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- Dijkstra's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
- The running time can also be expressed as $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected.


## Extension

Using the template method pattern, we can extend Dijkstra's algorithm to return a tree of shortest paths from the start vertex to all other vertices

- Store with each vertex a third label:
- parent edge in the shortest path tree
- In the edge relaxation step, update the parent label

```
Algorithm DijkstraShortestPathsTree(G, s)
for all }v\inG.vertices(
    setParent(v, \varnothing)
    ...
    for all }e\inG.incidentEdges(u
    { relax edge e }
    z}\leftarrowG.opposite(u,e
    r\leftarrowgetDistance(u)+weight(e)
    if r<getDistance(z)
        setDistance(z,r)
        setParent(z,e)
        Q.replaceKey(getLocator(z),r)
```


## Why Dijkstra's Algorithm Works

Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.

Claim: Whenever a vertex $u$ is pulled into the cloud, $\mathrm{D}[u]=\mathrm{d}(v, u)$.
Outline of Proof (by contradiction):

- Suppose $\boldsymbol{u}$ is the first vertex such that $\mathrm{D}[u]>\mathrm{d}(v, u)$.
- Let $z$ be the first vertex on the shortest $v-u$ path $P$ which hasn't been pulled into the cloud yet, and let $\boldsymbol{y}$ be the vertex before $z$ on $P$.
- Then, $\mathrm{D}[z]=\mathrm{d}(v, z)$.
- Since $z$ is on shortest $v-u$ path, $\mathrm{d}(v, z)+\mathrm{d}(z, u)=\mathrm{d}(v, u)$.
- Since $u$ is processed before $z, \mathrm{D}[u] \leq \mathrm{D}[z]$.
- $\mathrm{D}[u] \leq \mathrm{D}[z]=\mathrm{d}(v, z) \leq \mathrm{d}(v, z)+\mathrm{d}(z, u)=\mathrm{d}(v, u)$, a contradiction.


## Why It Doesn't Work for Negative-Weight Edges

Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.

- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.
- This violates the greedy property.

$C^{\prime}$ s true distance is 1 , but it is already in the cloud with $\mathrm{d}(C)=5$ !


## Bellman-Ford Algorithm

- Works even with negative-weight edges
- Must assume directed edges (otherwise we would have negative-weight cycles)
- Iteration $\boldsymbol{i}$ finds all shortest paths that use $i$ edges beginning at $\boldsymbol{s}$
- Running time: $O(n m)$.
- Can be extended to detect a negative-weight cycle if it exists
- How?

```
Algorithm BellmanFord \((G, s)\)
    for all \(v \in G\).vertices()
        if \(v=s\)
            setDistance (v, 0)
        else
            setDistance \((v, \infty)\)
    for \(i \leftarrow 1\) to \(n-1\) do
    for each (directed) edge \(e=(u, z) \in\) G.edges()
            \(\{\) relax edge \(\boldsymbol{e}\) \}
            \(r \leftarrow\) getDistance \((u)+\) weight \((e)\)
            if \(r<\) getDistance \((z)\)
                setDistance \((z, r)\)
```


## Bellman-Ford Example

Nodes are labeled with their $\mathrm{d}(v)$ values


## DAG-based Algorithm

- Assumes $G$ is a DAG
- Works even with negative-weight edges
- Uses topological order
- Much faster than Dijkstra's algorithm
- Running time: $\mathrm{O}(n+m)$.

```
Algorithm DagDistances(G,s)
    for all v\inG.vertices()
        if }v=
        setDistance(v, 0)
        else
            setDistance(v, \infty)
    Perform a topological sort of the vertices
    for }u\leftarrow1\mathrm{ to }n\mathrm{ do { in topological order}
    for each edge }e=(u,z)\in\mathrm{ G.edges()
    { relax edge e}
        r}\leftarrow\mathrm{ getDistance(u)+weight(e)
        if r<getDistance(z)
        setDistance(z,r)
```


## DAG Example



## All-Pairs Shortest Paths

Find the distance between every pair of vertices in a weighted directed graph G.

- We can make $n$ calls to Dijkstra's algorithm (if no negative edges), which takes $\mathrm{O}(n m \log n)$ time.
- Likewise, $n$ calls to BellmanFord would take $\mathrm{O}\left(n^{2} m\right)$ time.

We can achieve $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time using the Floyd-Warshall dynamic programming algorithm.

```
Algorithm AllPair( \(\boldsymbol{G})\) \{assumes vertices \(1, \ldots, \boldsymbol{n}\}\)
for all vertex pairs ( \(i, j\) )
    if \(i=j\)
        \(D_{0}[i, i] \leftarrow 0\)
    else if \((i, j)\) is an edge in \(G\)
        \(D_{0}[i, j] \leftarrow\) weight of edge \((i, j)\)
    else
        \(D_{0}[i, j] \leftarrow+\infty\)
for \(k \leftarrow 1\) to \(n\) do
    for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(n\) do
            \(D_{k}[i, j] \leftarrow \min \left\{D_{k-1}[i, j], \quad D_{k-1}[i, k]+D_{k-1}[k, j]\right\}\)
return \(D_{n}\)
```



