Homework 3

Include your name, the homework number, and your complete work, including any steps used to obtain the answer. Submit a hard copy - written out legibly or printed - before class.

Section 1.5 (20 pts)

4. Let P (x, y) be the statement "Student x has taken class y," where the domain for x consists of all students in your class and for y consists of all computer science courses at your school. Express each of these quantifications in English. (3 pt)

a) $\exists x \exists y P(x, y)$	b) $\exists x \forall y P(x, y)$	c) $\forall x \exists y P(x, y)$
d) $\exists y \forall x P(x, y)$	e) $\forall y \exists x P(x, y)$	f) $\forall x \forall y P(x,y)$

10. Let F(x, y) be the statement "x can fool y," where the domain consists of all people in the world. Use quantifiers to express each of these statements. (5 pt)

- a) Everybody can fool Fred.
- b) Evelyn can fool everybody.
- c) Everybody can fool somebody.
- d) There is no one who can fool everybody.
- e) Everyone can be fooled by somebody.
- f) No-one can fool both Fred and Jerry.
- g) Nancy can fool exactly two people.
- h) There is exactly one person whom everybody can fool.
- i) No one can fool himself or herself.
- j) There is someone who can fool exactly one person besides himself or herself.

26. Let Q(x,y) be the statement "x+y=x-y." If the domain for both variables consists of all integers, what are the truth values? (3 pt)

a) $\exists x Q(x,2)$	b) $\exists x \exists y Q(x,y)$	c) $\forall x \exists y Q(x,y)$
d) $\exists y \forall x Q(x,y)$	e) $\forall y \exists x Q(x,y)$	f) $\forall x \forall y Q(x, y)$

30. Rewrite each of these statements so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives).

a) $\neg \exists y \exists x P(x, y)$ b) $\neg \forall x \exists y P(x, y)$ (2 pt)c) $\neg \exists y(Q(y) \land \forall x \neg R(x, y))$ d) $\neg \exists y(\exists x R(x, y) \lor \forall x S(x, y))$

Homework 3

(2 pt)

(2 pt)

(1 pt)

Section 1.6

4. What rule of inference is used in each of these arguments?

- a) Kangaroos live in Australia and are marsupials. Therefore, kangaroos are marsupials.
- b) It is either hotter than 100 degrees today or the pollution is dangerous. It is less than 100 degrees outside today. Therefore, the pollution is dangerous.
- c) Linda is an excellent swimmer. If Linda is an excellent swimmer, then she can work as a lifeguard. Therefore, Linda can work as a lifeguard.
- d) Steve will work at a computer company this summer. Therefore, this summer Steve will work at a computer company or he will be a beach bum.

20. Determine whether these are valid arguments.

- a) If x is a positive real number, then x^2 is a positive real number. Therefore, if a^2 is positive, where a is a real number, then a is a positive real number.
- b) If $x^2 \neq 0$, where x is a real number, then $x \neq 0$. Let a be a real number with $a^2 \neq 0$; then $a \neq 0$.

24. Identify the error or errors in this argument that supposedly shows that if $\forall x(P(x) \lor Q(x))$ is

true then $\forall x P(x) \lor \forall x Q(x)$ is true.

1. $\forall x(P(x) \lor Q(x))$	Premise	
2. $P(c) \lor Q(c)$	Universal instantiation from (1)	
3. <i>P</i> (<i>c</i>)	Simplification from (2)	
4. $\forall x P(x)$	Universal generalization from (3)	
5. Q(c)	Simplification from (2)	
6. $\forall x Q(x)$	Universal generalization from (5)	
7. $\forall x(P(x) \lor \forall xQ(x))$ Conjunction from (4) and (6)		

30. Use resolution to show the hypotheses "Allen is a bad boy or Hillary is a good girl" and "Allen is a good boy or David is happy" imply the conclusion "Hillary is a good girl or David is happy."

(2 pt)