Include your name, the home work number, and your complete work, including any steps used to obtain the answer. Submit a hard copy - written out legibly or printed - before class. (18pts)

Section 5.1

4. Let $P(n)$ be the statement that $1^{3}+2^{3}+\cdots+n^{3}=$ $(n(n+1) / 2)^{2}$ for the positive integer n.
a) What is the statement $P(1)$?
b) Show that $P(1)$ is true, completing the basis step of the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step, identifying where you use the inductive hypothesis.
f) Explain why these steps show that this formula is true whenever n is a positive integer.
5. a) Find a formula for

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}
$$

by examining the values of this expression for small values of n.
b) Prove the formula you conjectured in part (a).
18. Let $P(n)$ be the statement that $n!<n^{n}$, where n is an integer greater than 1 .
a) What is the statement $P(2)$?
b) Show that $P(2)$ is true, completing the basis step of the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1 .
32. Prove that 3 divides $n^{3}+2 n$ whenever n is a positive integer.

Section 5.3

4. Find $f(2), f(3), f(4)$, and $f(5)$ if f is defined recursively by $f(0)=f(1)=1$ and for $n=1,2, \ldots$
a) $f(n+1)=f(n)-f(n-1)$.
b) $f(n+1)=f(n) f(n-1)$.
c) $f(n+1)=f(n)^{2}+f(n-1)^{3}$.
d) $f(n+1)=f(n) / f(n-1)$.
5. Prove that $f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}$ when n is a positive integer.
6. Give a recursive definition of
a) the set of odd positive integers.
b) the set of positive integer powers of 3 .
7. Use structural induction to show that $l(T)$, the number of leaves of a full binary tree T, is 1 more than $i(T)$, the number of internal vertices of T.
