Applications of Propositional Logic

Section 1.2

Applications of Propositional Logic:

Summary

- Translating English to Propositional Logic
- System Specifications
- Boolean Search
- Logic Puzzles
- Logic Circuits

Translating English Sentences

- Steps to convert an English sentence to a statement in propositional logic
- Identify atomic propositions and represent using propositional variables.
- Determine appropriate logical connectives
- "If I go to Harry's or to the country, I will not go shopping."
- p : I go to Harry's
- q : I go to the country.
- r : I will go shopping.

If p or q then not r. $(p \vee q) \rightarrow \neg r$

Example: Translate into

 propositional logic"You can access the Internet from campus only if you are a computer science major or you are not a freshman."

One Solution:

a: "You can access the internet from campus"
c: "You are a computer science major"
f. "You are a freshman."

$$
a \rightarrow(c \vee \neg f)
$$

System Specifications

- System and Software engineers take requirements in English and express them in a precise specification language based on logic.
Example: Express in propositional logic:
"The automated reply cannot be sent when the file system is full"
One solution: Let p denote "The automated reply can be sent" and q denote "The file system is full."

$$
\mathrm{q} \rightarrow \neg p
$$

Consistent System Specifications

Definition: A list of propositions is consistent if it is possible to assign truth values (T/F) to the proposition variables so that each compound proposition in the list is true.
Exercise: Are these specifications consistent?

- "The diagnostic message is stored in the buffer or it is retransmitted." $p \vee q$
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retransmitted."
Solution: p: "The diagnostic message is stored in the buffer."
q : "The diagnostic message is retransmitted."
When p is false and q is true all three statements are true. So the specification is consistent.

Consistent System Specifications

Exercise: What if the specification "The diagnostic message is not retransmitted" is added? Is it still consistent?

- "The diagnostic message is stored in the buffer or it is retransmitted." $p \vee q$
- "The diagnostic message is not stored in the buffer." $\neg p$
- "If the diagnostic message is stored in the buffer, then it is $p \rightarrow q$ retransmitted."
- "The diagnostic message is not retransmitted." $\neg q$

Solution: There is no satisfying assignment. The specification is not consistent.

Consistent System Specifications

- "The diagnostic message is stored in the buffer or it is retransmitted."
- "The diagnostic message is not stored in the buffer."
- "If the diagnostic message is stored in the buffer, then it is retransmitted."
- What if "The diagnostic message is not retransmitted" is added.

p	q	$\mathrm{p} \vee \mathrm{q}$	$\neg \mathrm{p}$	$\mathrm{p} \rightarrow \mathrm{q}$	$\neg \mathrm{q}$
F	F	F	T	T	T
F	T	T	T	T	F
T	F	T	F	F	T
T	T	T	F	T	F

Boolean Search

- Logical connectives are used extensively in searches of large collections of information.
- Boolean search is a type of search allowing users to combine keywords with Logical connectives to further produce more relevant results.
- In Boolean searches,
- AND is used to match records that contain both of two search terms.
- OR is used to match one or both of two search terms.
- NOT (sometimes written as AND NOT) is used to exclude a particular search term.
- Example (Web Page Searching):
- Most Web search engines support Boolean searching techniques.
- For instance, using Boolean searching to find Web pages about universities in New Mexico.
- Search "NEW AND MEXICO AND UNIVERSITIES".
- The results of this search will include those pages that contain the three words NEW, MEXICO, and UNIVERSITIES.

Logic Puzzles

- An island has two kinds of inhabitants, knights, who always tell the truth, and knaves, who always lie.
- You go to the island and meet A and B.
- A says " B is a knight."
- B says "The two of us are of opposite types."

Example: What are the types of A and B ?
Solution: Let p : " A is a knight"and q : " B is a knight.
So, then $\neg p$: " A is a knave" and $\neg q$: " B is a knave."

- If A is a knight, then p is true. Since knights tell the truth, q must also be true. Then $(\mathrm{p} \wedge \neg \mathrm{q}) \vee(\neg \mathrm{p} \wedge q)$ would have to be true, but it is not. So, A is not a knight and therefore $\neg p$ must be true.
- If A is a knave, then B must not be a knight since knaves always lie. So, then both $\neg p$ and $\rightarrow q$ hold since both are knaves.

Logic Circuits (Studied in depth in Chapter 12)

- Electronic circuits; each input/output signal can be viewed as a o or 1 .
- o represents False/Off
- 1 represents True/On
- Complicated circuits are constructed from three basic circuits called

Inverter

OR gate

AND gate

- The inverter (NOT gate)takes an input bit and produces the negation of that bit.
- The OR gate takes two input bits and produces the value equivalent to the disjunction of the two bits.
- The AND gate takes two input bits and produces the value equivalent to the conjunction of the two bits.

Logic Circuits
 (Studied in depth in Chapter 12)

Inverter

OR gate

AND gate

- More complicated digital circuits can be constructed by combining these basic circuits to produce the desired output given the input signals by building a circuit for each piece of the output expression and then combining them.
- For example, this circuit results in $(p \wedge \neg q) V \neg r$

Example

- Build a digital circuit that produces the output:
- $(p \vee \neg r) \wedge(\neg p \vee(q \vee \neg r))$
- when given input bits p, q, and r.

