Propositional Equivalences

Section 1.3

Section Summary

- Tautologies, Contradictions, and Contingencies.
- Logical Equivalence
- Important Logical Equivalences
- Showing Logical Equivalence
- Normal Forms (optional, covered in exercises in text)
- Disjunctive Normal Form
- Conjunctive Normal Form
- Propositional Satisfiability
- Sudoku Example

Tautologies, Contradictions, and

 Contingencies- A tautology is a proposition which is always true.
- Ex: $p \vee \neg p$
- A contradiction is a proposition which is always false.
- Ex: $p \wedge \neg p$
- A contingency is a proposition which is neither a tautology nor a contradiction
- Ex: p

P	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$
T	F	T	F
F	T	T	F

Logically Equivalent

- Two compound propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology.
- We write this as $p \Leftrightarrow q$ or as $p \equiv q$
- Two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree.
- This truth table shows $\neg p \vee q \equiv p \rightarrow q$

p	q	$\neg p$	$\neg p \vee q$	$p \rightarrow q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

De Morgan's Laws

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

Augustus De Morgan 1806-1871

Show using a truth table that De Morgan's Second Law holds.

p	q	$\neg p$	$\neg q$	$(p \vee q)$	$\neg(p \vee q)$	$\neg p \wedge \neg q$
T	T	F	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
F	F	T	T	F	T	T

Use De Morgan's laws to find the negation of the statement

- Jan is rich and happy.
p : Jan is rich
q : Jan is happy
$\neg(p \wedge q) \equiv \neg p \vee \neg q$
Jan is not rich or not happy.
$(p \wedge q)$
- Carlos will bicycle or run tomorrow.
p: Carlos will bicycle tomorrow
q : Carlos will run tomorrow
($p \vee q$)
$\neg(\mathrm{p} \vee \mathrm{q}) \equiv \neg \mathrm{p} \wedge \neg \mathrm{q}$
Carlos will not bicycle and will not run tomorrow.

Key Logical Equivalences

- Double Negation Law:

$$
\neg(\neg p) \equiv p
$$

- Negation Laws: $\quad p \vee \neg p \equiv T \quad p \wedge \neg p \equiv F$
- Identity Laws: $\quad p \vee F \equiv p \quad, \quad p \wedge T \equiv p$
- Domination Laws: $p \vee T \equiv T \quad, \quad p \wedge F \equiv F$
- Idempotent laws:

$$
p \vee p \equiv p \quad, \quad p \wedge p \equiv p
$$

Key Logical Equivalences (cont)

- Commutative Laws: $p \vee q \equiv q \vee p, \quad p \wedge q \equiv q \wedge p$
- Associative Laws: $\quad(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$

$$
(p \vee q) \vee r \equiv p \vee(q \vee r)
$$

- Distributive Laws:

$$
\begin{aligned}
& (p \vee(q \wedge r) \equiv(p \vee q)) \wedge(p \vee r) \\
& (p \wedge(q \vee r)) \equiv(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

- Absorption Laws: $\quad p \vee(p \wedge q) \equiv p, p \wedge(p \vee q) \equiv p$

More Logical Equivalences

TABLE 7 Logical Equivalences
 Involving Conditional Statements.

$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& \hline p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

TABLE 8 Logical

 Equivalences Involving Biconditional Statements.$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

Constructing New Logical

Equivalences

- We can show that two expressions are logically equivalent by developing a series of logically equivalent statements.
- To prove that $A \equiv B$ we produce a series of equivalences beginning with A and ending with B .

$$
\begin{array}{r}
A \equiv A_{1} \\
\equiv A_{2} \\
\equiv A_{3} \\
\vdots \\
\equiv B
\end{array}
$$

Equivalence Proofs

Example: Show that $\neg(p \vee(\neg p \wedge q))$ is logically equivalent to $\neg p \wedge \neg q$

Solution:

$$
\begin{aligned}
\neg(p \vee(\neg p \wedge q)) & \equiv \neg p \wedge \neg(\neg p \wedge q) \\
& \equiv \neg p \wedge[\neg(\neg p) \vee \neg q] \\
& \equiv \neg p \wedge(p \vee \neg q) \\
& \equiv(\neg p \wedge p) \vee(\neg p \wedge \neg q) \\
& \equiv F \vee(\neg p \wedge \neg q) \\
& \equiv(\neg p \wedge \neg q) \vee F \\
& \equiv(\neg p \wedge \neg q)
\end{aligned}
$$

by the second De Morgan law
by the first De Morgan law
by the double negation law
by the second distributive law
because $\neg p \wedge p \equiv F$
by the commutative law for disjunction
by the identity law for \mathbf{F}

Equivalence Proofs

Example: Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology.

Solution:

$$
\begin{array}{rlrl}
(p \wedge q) \rightarrow(p \vee q) & \equiv \neg(p \wedge q) \vee(p \vee q) & & \text { by truth table for } \rightarrow \\
& \equiv(\neg p \vee \neg q) \vee(p \vee q) & & \text { by the first De Morgan law } \\
& \equiv(\neg p \vee p) \vee(\neg q \vee q) & \text { by associative and } \\
& & \text { commutative laws } \\
& \equiv T \vee T & \begin{array}{l}
\text { laws for disjunction }
\end{array} \\
& \equiv T & \text { by truth tables } \\
& & \text { by the domination law }
\end{array}
$$

DNF (optional)

- A propositional formula is in disjunctive normal form if it consists of a disjunction of conjunctive clauses
- Yes $(p \wedge \neg q \wedge r) \vee(r \wedge s)$
- No $p \wedge(p \vee q)$
- Disjunctive Normal Form is important for the circuit design methods discussed in Chapter 12.

DNF (optional)

Example: Show that every compound proposition can be put in disjunctive normal form.
Solution: Construct the truth table for the proposition. Then an equivalent proposition is the disjunction with n disjuncts (where n is the number of rows for which the formula evaluates to \mathbf{T}). Each disjunct has m conjuncts where m is the number of distinct propositional variables. Each conjunct includes the positive form of the propositional variable if the variable is assigned \mathbf{T} in that row and the negated form if the variable is assigned \mathbf{F} in that row. This proposition is in disjunctive normal from.

DNF (optional)

Example: Find the Disjunctive Normal Form (DNF) of

$$
(p \vee q) \rightarrow \neg r
$$

Solution: This proposition is true when r is false or when both p and q are false.

$$
(\neg p \wedge \neg q) \vee \neg r
$$

CNF (optional)

- A compound proposition is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions.
- Yes $(F \vee \neg p) \wedge(\neg q \vee r)$
- No $\quad p \vee(q \wedge r)$
- Every proposition can be put in an equivalent CNF, through repeated application of the logical equivalences covered earlier (eliminating implications, moving negation inwards, and using distributive/associative laws).
- Important in resolution theorem proving used in AI.

CNF (optional)

Example: Put the following into CNF:

$$
\neg(p \rightarrow q) \vee(r \rightarrow p)
$$

Solution:

1. Eliminate implication signs:

$$
\neg(\neg p \vee q) \vee(\neg r \vee p)
$$

2. Move negation inwards; eliminate double negation:

$$
(p \wedge \neg q) \vee(\neg r \vee p)
$$

3. Convert to CNF using associative/distributive laws

$$
(p \vee \neg r \vee p) \wedge(\neg q \vee \neg r \vee p)
$$

Propositional Satisfiability

- A compound proposition is satisfiable if there is an assignment of truth values to its variables that make it true. When no such assignments exist, the compound proposition is unsatisfiable.
- A compound proposition is unsatisfiable if and only if its a contradiction (i.e., always false).

Questions on Propositional Satisfiability

Example: Determine the satisfiability of the following compound propositions:

$$
(p \vee \neg q) \wedge(q \vee \neg r) \wedge(r \vee \neg p)
$$

Solution: Satisfiable. Assign \mathbf{T} to p, q, and r.

$$
(p \vee q \vee r) \wedge(\neg p \vee \neg q \vee \neg r)
$$

Solution: Satisfiable. Assign \mathbf{T} to p and \boldsymbol{F} to q.
$(p \vee \neg q) \wedge(q \vee \neg r) \wedge(r \vee \neg p) \wedge(p \vee q \vee r) \wedge(\neg p \vee \neg q \vee \neg r)$
Solution: Not satisfiable. Check each possible assignment of truth values to the propositional variables and none will make the proposition true.

Notation

$$
\begin{aligned}
& \bigvee_{j=1}^{n} p_{j} \text { is used for } p_{1} \vee p_{2} \vee \ldots \vee p_{n} \\
& \bigwedge_{j=1}^{n} p_{j} \text { is used for } p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}
\end{aligned}
$$

Needed for the next example.

Sudoku

- A Sudoku puzzle is represented by a 9×9 grid made up of nine 3×3 subgrids, known as blocks. Some of the 81 cells of the puzzle are assigned one of the numbers $1,2, \ldots, 9$.

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
5								
7			3					5
	1			9				
							6	

- The puzzle is solved by assigning numbers to each blank cell so that every row, column and block contains each of the nine possible numbers.

Encoding as a Satisfiability Problem

- Let $p(i, j, n)$ denote the proposition that is true when the number n is in the cell in the i th row and the j th column.
- There are $9 \times 9 \times 9=729$ such propositions.
- In the sample puzzle $p(5,1,6)$ is true, but $p(5, j, 6)$ is false for j

$$
=2,3, \ldots 9
$$

1		2	9				4			
2				5			1			
3		4								
4					4	2				
5	6							7		
6	5									
7	7			3						5
8		1			9					
9									6	

Encoding (cont)

- For each cell with a given value n, assert $p(i, j, n)$.
- Assert that every row contains every number.

$$
\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9} p(i, j, n)
$$

- Assert that every column contains every number.

$$
\bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i, j, n)
$$

Encoding (cont)

- Assert that each of the 3×3 blocks contain every number.

$$
\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3 r+i, 3 s+j, n)
$$

(this is tricky - ideas from chapter 4 help)

- Assert that no cell contains more than one number. Take the conjunction over all values of n, n^{\prime}, i, and j, where each variable ranges from 1 to 9 and $n \neq n^{\prime}$ of $\quad p(i, j, n) \rightarrow \neg p\left(i, j, n^{\prime}\right)$

Solving Satisfiability Problems

- To solve a Sudoku puzzle, we need to find an assignment of truth values to the 729 variables of the form $p(i, j, n)$ that makes the conjunction of the assertions true. Those variables that are assigned T yield a solution to the puzzle.
- A truth table can always be used to determine the satisfiability of a compound proposition.
- Too complex even for modern computers for large problems.
- There has been much work on developing efficient methods for solving satisfiability problems as many practical problems can be translated into satisfiability problems.

