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Proofs of Mathematical Statements
 A proof is a valid argument that establishes the truth of a 

statement.
 In math, CS,  and other disciplines, informal proofs which are 

generally shorter, are generally used.
 More than one rule of inference are often used in a step. 
 Steps may be skipped.
 The rules of inference used are not explicitly stated. 
 Easier for to understand and to explain to people. 
 But it is also easier to introduce errors. 

 Proofs have many practical applications:
 verification that computer programs are correct 
 establishing that operating systems are secure 
 enabling programs to make inferences in artificial intelligence 
 showing that system specifications are consistent
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Definitions
 A theorem is a statement that can be shown to be true using:

 definitions

 other theorems

 axioms (statements which are known to be true) 

 rules of inference

 Less important theorems are sometimes called propositions. 

 A lemma is a ‘helping theorem’ or a result which is needed to 
prove a theorem.

 A corollary is a result which follows directly from a theorem.

 A conjecture is a statement that is being proposed to be true (it 
might be false!). Once a proof of a conjecture is found, it 
becomes a theorem.
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Forms of Theorems 
 Many theorems assert that a property holds for all elements 

in a domain, such as the integers, the real numbers, or 
some of the discrete structures that we will study in this 
class. 

 Often the universal quantifier (needed for a precise 
statement of a theorem) is omitted by standard 
mathematical convention. 

For example, the statement:

“If x > y, where x and y are positive real numbers, then x2 > y2 ”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2 .”
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Methods of Proving Theorems
 Many theorems have the form:  

 To prove them, we show that where c is an arbitrary
element of the domain, 

 By universal generalization (UG) the truth of the 
original formula follows.

 So, we must prove something of the form:

 You need to show that q is true if p is true.
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Proving Conditional Statements: p → q

Trivial Proof: If we know q is true, then p→q is true as well.   
Ex: Prove “If it is raining then 1=1.”
Since 1=1, the implication is true.

Vacuous Proof: If we know p is false then p→q is true as well.
Ex: Prove “If I am both rich and poor then 2+2 = 5.”
Since I can’t be both rich and poor, the implication is true.

[ Even though these examples seem silly, both trivial and 
vacuous proofs are often used in mathematical induction, 
as we will see in Ch. 5 ]
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Even and Odd Integers
Definition:  The integer n is even if there exists an 

integer k such that n = 2k, and n is odd if there exists 
an integer k, such that n = 2k + 1. Note that every 
integer is either even or odd and no integer is both 
even and odd.

We will need this basic fact about the integers in some 
of the example proofs to follow. 

8



Proving Conditional Statements: p → q
 Direct Proof: Assume that p is true. Use rules of inference, 

axioms, and logical equivalences to show that q must also be 
true.

Ex: Give a direct proof of the theorem “If n is an odd integer, 
then n2 is odd.”

Solution: Assume that n is odd. Then n = 2k + 1 for an 
integer k. Squaring both sides of the equation, we get:

n2 = (2k + 1)2  = 4k2 + 4k +1 = 2(2k2 + 2k) + 1= 2r + 1,

where r = 2k2 + 2k , an integer.                                  

We have proved that if n is an odd integer, then n2 is an odd 
integer.    

(      marks the  end of  the proof. Sometimes QED is used instead. )  
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Proving Conditional Statements: p → q
Definition: The real number r is rational if there exist 
integers p and q where  q≠0 such that r = p/q

Ex: Prove that the sum of two rational numbers is 
rational.

Solution: Assume r and s are two rational numbers. 
Then there must be integers p, q and also t, u  such that

Thus the sum is rational. 

where v = pu + qt 
w = qu ≠ 0
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Proving Conditional Statements: p → q
 Proof by Contraposition: Assume ¬q and show ¬p is true also. This is 

sometimes called an indirect proof method. If we give a direct proof of 
¬q → ¬p then we have a proof of p → q.

Why does this work?

Ex: Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Solution: Assume by contraposition that n is even. So, n = 2k for 
some integer k. Thus 

3n + 2 = 3(2k) + 2 =6k +2 = 2(3k + 1) = 2j  for j = 3k +1

Therefore 3n + 2 is even. Since we have shown ¬q → ¬p ,  p → q
must hold as well. If n is an integer and 3n + 2 is odd (not even) , 
then n is odd (not even).
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Proving Conditional Statements: p → q
Ex: Prove that for an integer n, if n2 is odd, then n is odd. 

Solution:  Use proof by contraposition. Assume n is even 
(i.e., not odd).  Therefore, there exists an integer k such 
that n = 2k. Hence,

n2 =  4k2 = 2 (2k2) 

and n2 is even(i.e., not odd).

We have shown that if n is an even integer, then n2 is even. 
Therefore by contraposition, for an integer n, if n2 is odd, 
then n is odd. 
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Proving Conditional Statements: p → q
 Proof by Contradiction: (AKA reductio ad absurdum).  

Assume the statement is false and derive a contradiction. If the 
statement is p→q, the negation of this statement is (p∧¬q).
Assume p and ¬q, then derive a contradiction such as  r∧¬r. (an 
indirect form of proof). Since we have shown that ¬q∧p →F is 
true , it follows that the contrapositive  T→(p→q) also holds.

Ex: Prove that if you pick 22 days from the calendar, at least 4 
must fall on the same day of the week.

Solution: Assume by contradiction that you pick 22 days from 
the calendar and no more than 3  of the 22 days fall on the same 
day of the week. Because there are 7 days of the week, we could 
only have picked 21 days. This contradicts the assumption that 
we have picked 22 days.
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Proving Conditional Statements: p → q
Ex: Prove that if n is an integer and 3n + 2 is odd, then n 

is odd.

Solution: Assume by contradiction that n is even and 
3n+2 is odd. So, n = 2k for some integer k. Thus 

3n + 2 = 3(2k) + 2 =6k +2 = 2(3k + 1) = 2j  for j
= 3k +1

Therefore 3n + 2 is even. This contradicts our original 
assumption that 3n+2 is odd.
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Theorems that are Biconditional 
Statements
 To prove a theorem that is a biconditional statement (p 

↔ q), show that p → q and q →p are both true. 

Ex: Prove “An integer n is odd iff n2 is odd.”

Solution:  We have already shown (previous slides) that 
both p →q and q →p. Therefore we can conclude p↔q.

Sometimes iff   is used as an abbreviation for “if an only if,” as in

“If n is an integer, then n is odd iff n2 is odd.”
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What is wrong with this?

“Proof” that 1 = 2

Solution: Step 5.  a - b = 0 by the premise and division by 0 is undefined. 
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What is wrong with this?
 EX:  If 𝑛2 is positive, then n is positive.
 “Proof:" Suppose that 𝑛2is positive. Because the conditional 

statement “If n is positive, then 𝑛2 is positive” is true, we can 
conclude that n is positive.

 Solution: 
 P(n): “n is positive” and Q(n) “𝑛2 is positive.” Then our hypothesis is 

Q(n). 
 The statement “If n is positive, then n2 is positive” is the statement 

∀n(P (n) → Q(n)). 
 From the hypothesis Q(n) and the statement ∀n(P (n) → Q(n)) we 

cannot conclude P(n), because we are not using a valid rule of 
inference. 

 A counterexample is supplied by n = −1 for which n2= 1 is positive, 
but n is negative.
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Types of Proofs Summary
How to prove the conditional statement p →q:

 Trivial Proof (q is already known to be true)
 Vacuous Proof (p is already known to be false)
 Direct Proof

 Assume p is true.
 Show q is true.

 Proof by Contraposition (indirect)
 Assume ¬q is true.
 Show ¬p is true.

 Proof by Contradiction (indirect)
 Assume the statement is false: ¬q is true and p is true.
 Derive a contradiction, such as r∧¬r.
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Tips for Writing Proofs
 Rewrite statement in propositional logic. Ex: p →q

 Determine the hypothesis (p) and consequence (q)

 First try a direct proof.

 If that doesn’t work, try an indirect method.

 State proof method and assumptions.

 Example excerpts from proofs
 “We use a direct proof and assume that (p)”

 “We prove the contraposition. Assume that (¬q)”

 “Assume by contradiction that (¬q) and (p)”
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Looking Ahead
 First try a direct proof.

 If direct methods of proof do not work: 

 We may need a clever use of a proof by contraposition.

 Or a proof by contradiction.

 In the next section, we will see strategies that can be 
used when straightforward approaches do not work.

 In Ch. 5, we will see mathematical induction and related 
techniques.

 In Ch. 6, we will see combinatorial proofs
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