2.1 Examples

Use set builder notation to give a description of each of these sets.

- 1) $\{0,3,6,9,12\}$
- $\{3 n \mid n=0,1,2,3,4\}$
- $\{x \mid x$ is a multiple of 3 and $0 \leq x \leq 12\}$.
- 2) $\{-3,-2,-1,0,1,2,3\}$
- $\{x \mid-3 \leq x \leq 3\}$
- 3) $\{m, n, o, n\}$
- $\{x \mid x$ is a letter of the word moon $\}$

Use a Venn diagram to illustrate the

 relationships $A \subset B, A \subset C$, and $C \subset D$.

What is the power set of the set $S=\{0,1,2\}$?

$|S|=3$
$|P(S)|=2^{|S|}=2^{3}=8$
$P(\{0,1,2\})=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$

What is the power set of the set $S=\emptyset$?

$$
\begin{aligned}
& |S|=0 \\
& |P(S)|=2^{|S|=2^{0}=1} \\
& P(\varnothing)=\{\varnothing\}
\end{aligned}
$$

What is the power set of the set $S=\{\varnothing\}$?

$$
\begin{aligned}
& |S|=1 \\
& |P(S)|=2^{|S|=2^{1}=2} \\
& P(\{\varnothing\})=\{\varnothing,\{\varnothing\}\}
\end{aligned}
$$

What is the cartesian product of $A \times B$, where $A=\{0,1\}$ and $B=\{0,1\}$?

$$
A \times B=\{(0,0),(0,1),(1,0),(1,1)\}
$$

How many pairs in $\mathrm{A} \times \mathrm{B}$?
Answer:?

What is the cartesian product of $A \times B$, where $A=$ $\{A, K, Q, J, 10,9,8,7,6,5,4,3,2\}$ and $B=\{\mathbf{\varphi}, \bullet, \boldsymbol{\varphi}\}$?

$$
\begin{aligned}
& \{(\mathrm{A}, \boldsymbol{\varphi}),(\mathrm{A}, \boldsymbol{\varphi}),(\mathrm{A}, \stackrel{*}{)},(\mathrm{A}, \boldsymbol{\varphi}) \text {, } \\
& (K, ~ ¢),(K, \bullet),(K, \bullet),(K, \$) \text {, }
\end{aligned}
$$

$(3, \uparrow),(3, \downarrow),(3, \downarrow),(3, \uparrow)$,
$(2, \uparrow),(2, \uparrow),(2, \downarrow),(2, \uparrow)\}$
All 52 cards in a deck by (rank, suit)!

What is the cartesian product of $A \times B \times C$, where $A=\{a\}, B=\{5,7\}, C=\{0,1\}$?

$$
A \times B \times C=\{(a, 5,0),(a, 5,1),(a, 7,0),(a, 7,1)\}
$$

How many pairs in $A \times B \times C$.

Translate into English

- $\forall x \in \mathrm{R}\left(x^{2} \neq-1\right)$
- The square of a real number is never -1. (True)
- $\exists x \in Z\left(x^{2}=2\right)$
- There exists an integer whose square is 2. (False)
- $\forall x \in \mathrm{Z}\left(x^{2}>0\right)$
- The square of every integer is positive. (False, for inst. 0)
- $\exists x \in \mathrm{R}\left(x^{2}=x\right)$
- There is a real number equal to its square. (True, for inst. 1)

