## Section 2.2 Examples

$U=\{r e d$, orange, yellow, green, blue, indigo, violet $\}$ $A=\{r e d$, orange, yellow $\}$
$B=\{y e l l o w$, green, blue $\}$

$$
A \cup B, A \cap B, A-B, \mathrm{~B}-A, \bar{A}
$$

$A \cup B=\{r e d$, orange, yellow, green, blue $\}$

$$
A \cap B=\{y e l l o w\}
$$

$A-B=\{r e d$, orange $\}$
$B-A=\{$ green, blue $\}$
$\bar{A}=\{$ green, blue, indigo, violet $\}$

## Show that if $A$ and $B$ are sets with $A \subseteq B$, then $A \cup B=B$.

It is always the case that $B \subseteq A \cup B$, so it remains to show that $A \cup B \subseteq B$. But this is clear because if $x \in A \cup$ $B$, then either $x \in A$, in which case $x \in B$ (because we are given $A \subseteq B$ ) or $x \in B$; in either case $x \in B$. QED.

## Prove that

## $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ by giving an element table proof.

| $A$ | $B$ | $C$ | $B \cup C$ | $A \cap(B \cup C)$ | $A \cap B$ | $A \cap C$ | $(A \cap B) \cup(A \cap C)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

# Prove the first identity law $A \cup \emptyset=A$ using set-builder notation 

$$
\begin{aligned}
A \cup \emptyset & =\{x \mid x \in A \vee x \in \emptyset\} \\
& =\{x \mid x \in A \vee F\} \\
& =\{x \mid x \in A\} \\
& =A
\end{aligned}
$$

