Section 2.2 Examples

 $U = \{red, orange, yellow, green, blue, indigo, violet\}$ $A = \{red, orange, yellow\}$ $B = \{yellow, green, blue\}$ $A \cup B, A \cap B, A - B, B - A, \overline{A}$

 $A \cup B = \{red, orange, yellow, green, blue\}$

 $A \cap B = \{yellow\}$

 $A - B = \{red, orange\}$

 $B - A = \{green, blue\}$

Ā = {*green, blue, indigo, violet*}

Show that if A and B are sets with $A \subseteq B$, then $A \cup B = B$.

It is always the case that $B \subseteq A \cup B$, so it remains to show that $A \cup B \subseteq B$. But this is clear because if $x \in A \cup B$, then either $x \in A$, in which case $x \in B$ (because we are given $A \subseteq B$) or $x \in B$; in either case $x \in B$. QED.

Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ by giving an element table proof.

A	B	С	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Prove the first identity law $A \cup \emptyset = A$ using set-builder notation

$$A \cup \emptyset = \{x \mid x \in A \lor x \in \emptyset\}$$
$$= \{x \mid x \in A \lor F\}$$
$$= \{x \mid x \in A\}$$
$$= A$$