Functions Section 2.3

Section Summary

- Definition of a Function.
 - Domain, Codomain
 - Image, Preimage
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling, Factorial, Modulo

Functions

- Definition: Let A and B be nonempty sets. A *function* f from A to B (*denoted as* f : A → B) is an assignment of exactly one element of B to each element of A.
- We write f(a) = b if *b* is the unique element of *B* assigned by the function *f* to the element *a* of *A*.

Given a function $f: A \rightarrow B$

- We say *f maps A* to *B* or *f* is a *mapping* from *A* to *B*.
- *A* is called the *domain* of *f*.
- *B* is called the *codomain* of *f*.
- If f(a) = b,
 - then *b* is called the *image* of *a* under *f*.
 - *a* is called the *preimage* of *b*.
- The *range* of *f* is the set of all images of points in **A** under *f*. We denote it by *f*(*A*).
- Two functions are *equal* when they have the same domain, the same codomain, and map each element of the domain to the same element of the codomain.

Representing Functions

Functions may be specified in different ways:

- An explicit statement of the assignment. Students and grades example.
- A formula.

f(x) = x + 1

• A computer program.

A C++ program that when given an integer *n*, produces the *n*th Fibonacci Number (covered in the next section and also in Ch. 5).

Questions f(a) = ? z

The image of d is ? \mathbf{z}

The domain of *f* is ? *A* The codomain of *f* is ? *B* The preimage of *y* is ? **b**

$$f(A) = ? \quad \{\mathbf{y}, \mathbf{z}\}$$

The preimage(s) of z is (are) ? {a,c,d}

Question on Functions and Sets • If $f : A \rightarrow B$ and S is a subset of A, then $f(S) = \{f(s) | s \in S\}$ A R $f(\{a,b,c\})$ is ? $\{y,z\}$ a X $f(\{c,d\})$ is ? $\{z\}$ C Ζ

Definition: A function f is said to be *one-to-one*, or *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.

- Using quantifiers to express on-to-one function
 - $\forall a \forall b (f(a) = f(b) \rightarrow a = b)$
 - or equivalently $\forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$,
 - where the domain of the quantifiers is the domain of the function.

- Ex1: Determine whether the function *f* from {*a*, *b*, *c*, *d*} to {1, 2, 3, 4, 5} with *f*(*a*) = 4, *f*(*b*) = 5, *f*(*c*) = 1, and *f*(*d*) = 3 is one-to-one.
- Solution: The function f is one-to-one because f takes on different values at the four elements of its domain.

Ex2 : Is the function $f: Z \rightarrow Z$, where $f(x) = x^2$ on-to-one?

• **Solution**: No, *f* is not on-to-one because, for instance, f(1) = f(-1) = 1, but $1 \neq -1$.

Ex3: Is the function $f: \mathbb{Z}^+ \to \mathbb{Z}$, where $f(x) = x^2$ on-to-one?

• **Solution**: yes, *f* is on-to-one

Surjections

Definition: A function *f* from *A* to *B* is called **onto** or **surjective**, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function *f* is called a *surjection* if it is onto.

surjections

- Using quantifiers to express onto function
 - $\forall b \exists a(f(a) = b)$
 - where the domain for a is the domain of the function and the domain for b is the codomain of the function.

Surjections

- Ex1: Determine whether the function *f* from {*a*, *b*, *c*, *d*} to {1, 2, 3,} with *f*(*a*) = 3, *f*(*b*) = 2, *f*(*c*) = 1, and *f*(*d*) = 3 is onto.
- *Solution*: Because all three elements of the codomain are images of elements in the domain, we see that *f* is onto.

Surjections

Ex2 : Is the function $f: Z \to Z$, where $f(x) = x^2$ onto?

• **Solution**: The function f is not onto because there is no integer x with $x^2 = -1$, for instance.

Ex3: Is the function $f: Z^+ \rightarrow Z^+$, where $f(x) = x^2$ onto?

• **Solution**: The function f is not onto because there is no integer x with $x^2 = 2$, for instance.

Bijections

Definition: A function f is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto (injective and surjective).

Bijections

Ex : Is the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$, where $f(x) = x^2$ bijective? **Solution**: No, because it is neither injective nor surjective.

Showing that *f* is injective or surjective

Suppose that $f : A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Inverse Functions

Definition: Let *f* be a bijection from *A* to *B*. Then the *inverse* of *f*, denoted f^{-1} , is the function from *B* to *A* defined as $f^{-1}(y) = x$ iff f(x) = y

No inverse exists unless *f* is a bijection. Why?

Inverse Functions

B

V

W

Х

Y

Questions

Ex 1: Let *f* be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is *f* invertible and if so what is its inverse?

Solution: The function f is invertible because it both injective and surjective. The inverse function $f^{_1}$ reverses the correspondence given by f, so $f^{_1}(1) = c$, $f^{_1}(2) = a$, and $f^{_1}(3) = b$.

Questions

Ex 2: Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function *f* is invertible because it is a bijection. The inverse function f^{i} reverses the correspondence so $f^{i}(y) = y - 1$.

Questions

Ex 3: Let $f: \mathbf{R} \to \mathbf{R}$ be such that $f(x) = x^2$ Is f invertible, and if so, what is its inverse?

Solution: The function *f* is not invertible because it is not surjective (nor injective).

Composition

• **Definition**: Let $f: B \to C, g: A \to B$. The *composition of f with g*, denoted $f \circ g$ is the function from *A* to *C* defined by $(f \circ g)(a) = f(g(a))$

Composition

h

Composition Questions Ex 1: If $f(x) = x^2$ and g(x) = 2x + 1, then and $f(g(x)) = (2x + 1)^2$

$$g(f(x)) = 2x^2 + 1$$

Composition Questions

Ex 2: Let *g* be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let *f* be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f with g, and what is the composition of g with f.

Solution: The composition *f* ∘ *g* is defined by

 $f \circ g(a) = f(g(a)) = f(b) = 2.$ $f \circ g(b) = f(g(b)) = f(c) = 1.$ $f \circ g(c) = f(g(c)) = f(a) = 3.$

Note that *g* of is not defined, because the range of *f* is not a subset of the domain of *g*.

Graphs of Functions

Let *f* be a function from the set *A* to the set *B*. The *graph* of the function *f* is the set of ordered pairs {(*a*,*b*) | *a* ∈ *A* and *f*(*a*) = *b*}.

Graph of $f(x) = x^2$ from Z to Z

Some Important Functions

- The *floor* function $f: R \to Z$, denoted $f(x) = \lfloor x \rfloor$ is the largest integer less than or equal to x.
- The *ceiling* function $f: R \to Z$, denoted $f(x) = \lceil x \rceil$ is the smallest integer greater than or equal to x

Ex:
$$\lfloor 3.5 \rfloor = 3$$
 $\begin{bmatrix} 3.5 \end{bmatrix} = 4$
 $\lfloor 2.1 \rfloor = 2$ $\begin{bmatrix} 2.1 \end{bmatrix} = 3$
 $\lfloor -1.5 \rfloor = -2$ $\begin{bmatrix} -1.5 \end{bmatrix} = -1$
 $\lfloor -1.1 \rfloor = -2$ $\begin{bmatrix} -1.1 \end{bmatrix} = -1$

Floor and Ceiling Functions

Graph of (a) Floor and (b) Ceiling Functions

Floor and Ceiling Functions

TABLE 1 Useful Properties of the Floorand Ceiling Functions.

(*n* is an integer, *x* is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

$$(2) \quad x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

$$(3a) \quad \lfloor -x \rfloor = -\lceil x \rceil$$

$$(3b) |-x| = -\lfloor x \rfloor$$

(4a)
$$\lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b) $\lceil x + n \rceil = \lceil x \rceil + n$

Factorial Function

Definition: The factorial function $f: \mathbb{N} \to \mathbb{Z}^+$, denoted by f(n) = n! is the product of the first *n* positive integers when *n* is a nonnegative integer.

 $f(n) = 1 \cdot 2 \cdots (n-1) \cdot n$, f(0) = 0! = 1

Examples:

Stirling's Formula:

- f(1) = 1! = 1 $n! \sim \sqrt{2\pi n} (n/e)^n$
- $f(2) = 2! = 1 \cdot 2 = 2$ $f(n) \sim g(n) \doteq \lim_{n \to \infty} f(n)/g(n) = 1$

 $f(6) = 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$

f(20) = 2,432,902,008,176,640,000.

Modulo Function

Definition: If *a* is an integer and *d* is a positive integer, then there are unique integers *q* and *r* with $o \le r < d$, such that

a = dq + r.

The modulo function, denoted *a mod d* is the remainder *r* when *a* is divided by *d*.

Examples:

$16 \mod 12 = 4$	(16 = 12 * 1 + 4)
$14 \mod 4 = 2$	(14 = 4 * 3 + 2)
$5 \mod 2 = 1$	(5 = 2 * 2 + 1)
$1 \mod 3 = 1$	(1 = 3*0 + 1)
$3 \mod 7 = 4$	(3 = 7*0 + 3)
$9 \mod 3 = 0$	(9 = 3 * 3 + 0)
$-5 \mod 3 = 1$	(-5 = 3 * - 2 + 1)
$-17 \mod 5 = 3$	(-17 = 5 * -4 + 3)