Sequences and Summations

Section 2.4

Section Summary

- Sequences
- Ex: Geometric Progression, Arithmetic Progression
- Recurrence Relations
- Ex: Fibonacci Sequence
- Summations

Introduction

- Sequences are ordered lists of elements.
- 1,2,3,5,8
- $1,3,9,27,81, \ldots \ldots .$.
- Sequences arise throughout mathematics, computer science, and in many other disciplines, ranging from botany to music.
- We will introduce the terminology to represent sequences and sums of the terms in the sequences.

Sequences

Definition: A sequence is a function from a subset of the integers (usually either the set $\{0,1,2,3,4, \ldots .$.$\} or$ $\{1,2,3,4, \ldots$.$\}) to a set S$.

- We use the notation $\left\{a_{n}\right\}$ to describe the sequence.
- a_{n} represents an individual term of the sequence $\{a n\}$
- The notation a_{n} is used to denote the image of the integer n. We can think of a_{n} as the equivalent of $f(n)$ where f is a function from $\{0,1,2, \ldots .$.$\} to S$.

Sequences

Example: Consider the sequence $\left\{a_{n}\right\}$ where $a_{n}=\frac{1}{n}$

$$
\begin{array}{r}
\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, a_{4}, \ldots \\
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots
\end{array}
$$

Geometric Progression

Definition: A geometric progression is a sequence of the form:

$$
a, a r, a r^{2}, \ldots, a r^{n}, \ldots
$$

where the initial term a and the common ratio r are real numbers.
Ex:

1. Let $a=1$ and $r=-1$. Then:

$$
\left\{b_{n}\right\}=b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, \ldots=1,-1,1,-1,1, \ldots
$$

2. Let $a=2$ and $r=5$. Then:

$$
\left\{c_{n}\right\}=c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, \ldots=2,10,50,250,1250, \ldots
$$

3. Let $a=6$ and $r=1 / 3$. Then:

$$
\left\{d_{n}\right\}=d_{0}, d_{l}, d_{2}, d_{3}, d_{4}, \ldots=6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots
$$

Arithmetic Progression

Definition: An arithmetic progression is a sequence of the form: $\quad a, a+d, a+2 d, \ldots, a+n d, \ldots$
where the initial term a and the common difference d are real numbers.
Ex:

1. Let $a=-1$ and $d=4$:

$$
\left\{s_{n}\right\}=s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots=-1,3,7,11,15, \ldots
$$

2. Let $a=7$ and $d=-3$:

$$
\left\{t_{n}\right\}=t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, \ldots=7,4,1,-2,-5, \ldots
$$

3. Let $a=1$ and $\mathrm{d}=2$:

$$
\left\{u_{n}\right\}=u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, \ldots=1,3,5,7,9, \ldots
$$

Strings

Definition: A string is a finite sequence of characters from a finite set (an alphabet).

- Sequences of characters or bits are important in computer science.
- The empty string is represented by λ.
- The string abcde has length 5.

Recurrence Relations

Definition: A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{o}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{o}$, where n_{o} is a nonnegative integer.

- The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Questions about Recurrence Relations

Example 1: Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}+3$ for $n=1,2,3,4, \ldots$. and suppose that $a_{0}=2$. What are a_{1}, a_{2} and a_{3} ?
[Here $a_{o}=2$ is the initial condition.]
What are a_{1}, a_{2}, and a_{3} ?
Solution: We see from the recurrence relation that

$$
\begin{aligned}
& a_{1}=a_{o}+3=2+3=5 \\
& a_{2}=5+3=8 \\
& a_{3}=8+3=11
\end{aligned}
$$

Questions about Recurrence Relations

Example 2: Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}-a_{n-2}$ for $n=2,3,4, \ldots$. and suppose that $a_{0}=3$ and $a_{1}=5$. What are a_{2} and a_{3} ?
[Here the initial conditions are $a_{o}=3$ and $a_{1}=5$.]
What are a_{2} and a_{3} ?
Solution: We see from the recurrence relation that

$$
\begin{aligned}
& a_{2}=a_{1}-a_{0}=5-3=2 \\
& a_{3}=a_{2}-a_{1}=2-5=-3
\end{aligned}
$$

Fibonacci Sequence

Definition: Define the Fibonacci sequence, $f_{0}, f_{1}, f_{2}, \ldots$, by:

- Initial Conditions: $f_{0}=0, f_{1}=1$
- Recurrence Relation: $f_{n}=f_{n-1}+f_{n-2}$

Example: Find $f_{2}, f_{3}, f_{4}, f_{5}$ and f_{6}.
Answer:

$$
\begin{aligned}
& f_{2}=f_{1}+f_{0}=1+0=1 \\
& f_{3}=f_{2}+f_{1}=1+1=2 \\
& f_{4}=f_{3}+f_{2}=2+1=3 \\
& f_{5}=f_{4}+f_{3}=3+2=5 \\
& f_{6}=f_{5}+f_{4}=5+3=8
\end{aligned}
$$

Solving Recurrence Relations

- Finding a formula for the nth term of the sequence generated by a recurrence relation is called solving the recurrence relation.
- Such a formula is called a closed formula.
- Many methods for solving recurrence relations (Ch. 8)
- Here we illustrate by example the method of iteration in which we need to guess the formula. The guess can be proved correct by the method of induction (Ch. 5).

Iterative Solution Example

Method 1: Working upward, forward substitution
Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}+3$ for $n=2,3,4, \ldots$. and suppose that $a_{1}=2$. $a_{2}=2+3$

$$
a_{3}=(2+3)+3=2+3 \cdot 2
$$

$$
a_{4}=(2+2 \cdot 3)+3=2+3 \cdot 3
$$

$$
a_{n}=a_{n-1}+3=(2+3 \cdot(n-2))+3=2+3(n-1)
$$

Iterative Solution Example

Method 2: Working downward, backward substitution Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}+3$ for $n=2,3,4, \ldots$. and suppose that $a_{1}=2$.

$$
\begin{aligned}
a_{n} & =a_{n-1}+3 \\
& =\left(a_{n-2}+3\right)+3=a_{n-2}+3 \cdot 2 \\
& =\left(a_{n-3}+3\right)+3 \cdot 2=a_{n-3}+3 \cdot 3 \\
& \quad \\
& \quad \\
& =a_{2}+3(n-2)=\left(a_{1}+3\right)+3(n-2)=2+3(n-1)
\end{aligned}
$$

Financial Application

Example: Suppose that a person deposits $\$ 10,000.00$ in a savings account at a bank yielding 11% per year with interest compounded annually. How much will be in the account after 30 years?
Let P_{n} denote the amount in the account after 30 years. P_{n} satisfies the following recurrence relation:

$$
P_{n}=P_{n-1}+0.11 P_{n-1}=(1.11) P_{n-1}
$$

with the initial condition $P_{\mathrm{o}}=10,000$

Continued on next slide \rightarrow

Financial Application

$$
P_{n}=P_{n-1}+0.11 P_{n-1}=(1.11) P_{n-1}
$$

$$
\text { with the initial condition } P_{\mathrm{o}}=10,000
$$

Solution: Forward Substitution

$$
\begin{aligned}
& P_{1}=(1.11) P_{\mathrm{o}} \\
& P_{2}=(1.11) P_{1}=(1.11)^{2} P_{\mathrm{o}} \\
& P_{3}=(1.11) P_{2}=(1.11)^{3} P_{\mathrm{o}} \\
& \quad: \\
& P_{n}=(1.11) P_{n-1}=(1.11)^{n} P_{\mathrm{o}}=(1.11)^{n} 10,000 \\
& P_{n}=(1.11)^{n} 10,000 \quad(\text { Can prove by induction, covered in Ch. } 5) \\
& P_{30}=(1.11)^{30} 10,000=\$ 228,992.97
\end{aligned}
$$

Useful Sequences

TABLE 1 Some Useful Sequences.

nth Term	First 10 Terms
n^{2}	$1,4,9,16,25,36,49,64,81,100, \ldots$
n^{3}	$1,8,27,64,125,216,343,512,729,1000, \ldots$
n^{4}	$1,16,81,256,625,1296,2401,4096,6561,10000, \ldots$
2^{n}	$2,4,8,16,32,64,128,256,512,1024, \ldots$
3^{n}	$3,9,27,81,243,729,2187,6561,19683,59049, \ldots$
$n!$	$1,2,6,24,120,720,5040,40320,362880,3628800, \ldots$
f_{n}	$1,1,2,3,5,8,13,21,34,55,89, \ldots$

Example: Conjecture a formula for a_{n} if the first to terms of the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ are $1,7,25,79,241,727,2185,6559,19681,59047$ Solution: $a_{n}=3^{n}-2$

Summations

- Sum of terms $a_{m}, a_{m+1}, \ldots, a_{n}$ from the sequence $\left\{a_{n}\right\}$
- The notation:

$$
\sum_{\substack{j=m \\ \text { represents }}}^{n} a_{j} \quad \sum_{j=m}^{n} a_{j} \quad \sum_{m \leq j \leq n} a_{j}
$$

$$
a_{m}+a_{m+1}+\cdots+a_{n}
$$

- The variable j is called the index of summation. It runs through all the integers starting with its lower limit m and ending with its upper limit n.

Summations

Examples:

- If $S=\{2,5,7,10\}$, then $\sum_{j \in S} j=2+5+7+10$
- $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots=\sum_{i=0}^{\infty} \frac{1}{i}$
- $r^{0}+r^{l}+r^{2}+r^{3}+._{1}+r^{n}=\sum_{j=0}^{n} r^{j}$

Geometric Series

Sums of terms of geometric progressions

$$
\sum_{j=0}^{n} a r^{j}= \begin{cases}\frac{a r^{n+1}-a}{r-1} & r \neq 1 \\ (n+1) a & r=1\end{cases}
$$

Proof: Let $\quad S_{n}=\sum_{j=0}^{n} a r^{j}$
To compute S_{n}, first multiply both sides of the equality by r and then manipulate the resulting sum as follows:

$$
\begin{aligned}
& r S_{n}=r \sum_{j=0}^{n} a r^{j} \\
&=\sum_{j=0}^{n} a r^{j+1} \\
& \text { By the distributive property } \\
& \text { Continued on next slide } \rightarrow
\end{aligned}
$$

Geometric Series

$$
\begin{aligned}
& =\sum_{j=0}^{n} a r^{j+1} \quad \text { From previous slide. } \\
& =\sum_{k=1}^{n+1} a r^{k} \quad \text { Shifting the index of summation with } k=j+1 \\
& =\left(\sum_{k=0}^{n} a r^{k}\right)+\left(a r^{n+1}-a\right) \\
& =S_{n}+\left(a r^{n+1}-a\right) \quad \begin{array}{l}
\text { Removing } k=n+1 \text { term and } \\
\text { adding } k=0 \text { term. }
\end{array} \\
& \begin{array}{l}
\text { Substituting } S \text { for } \\
\text { summation formula }
\end{array}
\end{aligned}
$$

$\therefore \quad r S_{n}=S_{n}+\left(a r^{n+1}-a\right)$
Continued on next slide \rightarrow

Geometric Series

$\therefore r S_{n}=S_{n}+\left(a r^{n+1}-a\right) \quad$ From previous slide.

$$
\begin{array}{ll}
r S_{n}-S_{n}=\left(a r^{n+1}-a\right) & \text { Solving for } S_{n} \\
S_{n}(r-1)=\left(a r^{n+1}-a\right) &
\end{array}
$$

if $\mathrm{r} \neq 1 \quad S_{n}=\frac{a r^{n+1}-a}{r-1}$
if $\mathrm{r}=1 \quad S_{n}=\sum_{j=0}^{n} a r^{j}=\sum_{j=0}^{n} a=(n+1) a$
QED

Double summations

- To evaluate the double sum, first expand the inner summation and then continue by computing the outer summation:

$$
\begin{aligned}
\sum_{i=1}^{4} \sum_{j=1}^{3} i j & =\sum_{i=1}^{4}(i+2 i+3 i) \\
& =\sum_{i=1}^{4} 6 i \\
& =6+12+18+24=60 .
\end{aligned}
$$

Summation with set and function

- We can use summation notation to add all values of a
- Function
- terms of an indexed set where the index of summation runs over all values in a set.

to represent the sum of the values $f(s)$, for all members s of S.

Example

What is the value of $\sum_{s \in\{0,2,4\}} s$?
Solution: Because $\sum_{s \in\{0,2,4\}} s$ represents the sum of the values of s for all the members of the set $\{0,2,4\}$, it follows that

$$
\sum_{s \in\{0,2,4\}} s=0+2+4=6 .
$$

Some Useful Summation Formulae

TABLE 2 Some Useful Summation Formulae.

