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Climbing an 
Infinite Ladder

Suppose we have an infinite ladder:
1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can 

reach the next rung.

From (1), we can reach the first rung. Then by 
applying (2), we can reach the second rung. 
Applying (2) again, the third rung. And so on.  
We can apply (2) any number of times to reach 
any particular rung, no matter how high up.

This example motivates proof by 
mathematical induction.
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Principle of Mathematical Induction
Principle of Mathematical Induction: To prove that P(n) is true for all 
positive integers n, we complete these steps:
 Basis Step: Show that P(1) is true.
 Inductive Step: Show that P(k) → P(k + 1) is true for all positive integers 

k.

To complete the inductive step, assuming the inductive hypothesis that 
P(k) holds for an arbitrary integer k, show that P(k + 1) must be true.

Climbing an Infinite Ladder Example:
 BASIS STEP: By (1), we can reach rung 1.
 INDUCTIVE STEP: Assume the inductive hypothesis that we can reach 

rung k. Then by (2), we can reach rung k + 1.

Hence, P(k) → P(k + 1) is true for all positive integers k. We can reach 
every rung on the ladder.
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Important Points About Using 
Mathematical  Induction
 Mathematical induction can be expressed  as the rule of 

inference

where the domain is the set of positive integers.

 In a proof by mathematical induction, we don’t assume
that P(k) is true for all positive integers! We show that if 
we assume that P(k) is true, then  P(k + 1) must also  be 
true. 

 Proofs by mathematical induction don’t always start at 
the integer 1. In such a case, the basis step begins at a 
starting point b where b is an integer. We will see 
examples of this soon.

(P(1) ∧ ∀k (P(k) → P(k + 1))) → ∀n P(n),

5



Proving a Summation Formula by 
Mathematical Induction

Example: Show that

Note: Once we have this 
conjecture, mathematical 
induction can be used to 
prove it correct.
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Solution:

 BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.

 INDUCTIVE STEP: Assume true for P(k).

The inductive hypothesis is

Under this assumption,   



Conjecturing and Proving Correct a 
Summation Formula

Example: Conjecture and prove correct a formula for the sum 
of the first n positive odd integers. Then prove your conjecture.

Solution: We have: 

1 = 1, 1 + 3 = 4, 

1 + 3 + 5 = 9, 1 + 3 + 5 + 7 = 16, 

1 + 3 + 5 + 7 + 9 = 25, 1 + 3 + 5 + 7 + 9 + 11 = 36

 We can conjecture that the sum of the first n positive odd integers is 
n2, 

1 + 3 + 5 + ∙∙∙+ (2n − 1) = n2 .  
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Conjecturing and Proving Correct a 
Summation Formula

Conjecture: The sum of the first n positive odd integers is n2, 

Proof (via mathematical induction):

Inductive Hypothesis: 1 + 3 + 5 + ∙∙∙+ (2k − 1)  =k2

1 + 3 + 5 + ∙∙∙+ (2k − 1) + (2k + 1) =[1 + 3 + 5 + ∙∙∙+ (2k − 1)] + (2k + 1)
= k2 + (2k + 1)  (by the inductive hypothesis)
= k2 + 2k + 1 
= (k + 1) 2
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1 + 3 + 5 + ∙∙∙+ (2n − 1)  =n2 .  

 INDUCTIVE STEP: P(k) → P(k + 1) for every positive integer k.

Assume the inductive hypothesis holds and then show that P(k+1) holds.

 So, assuming P(k), it follows that:

 Hence, we have shown that P(k + 1) follows from P(k). Therefore the sum of the first n 
positive odd integers is n2. 

 BASIS STEP: P(1) is true since 12 = 1.



Proving Inequalities
Example: Use mathematical induction to prove that      
n < 2n for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n.

 BASIS STEP: P(1) is true since 1 < 21 = 2.

 INDUCTIVE STEP: Assume P(k) holds, i.e., k < 2k, for an 
arbitrary positive integer k.

 Must show that P(k + 1) holds. Since by the inductive 
hypothesis, k < 2k, it follows that:

k + 1 < 2k + 1 ≤ 2k + 2k = 2 ∙ 2k = 2k+1

Therefore n < 2n holds for all positive integers n.
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Proving Inequalities
Example: Use mathematical induction to prove that                    

2n < n!, for every integer n ≥ 4.

Solution: Let P(n) be the proposition that 2n < n!.
 BASIS STEP: P(4) is true since 24 = 16  < 4! = 24.

 INDUCTIVE STEP: Assume P(k) holds, i.e., 2k < k! for an 
arbitrary integer k ≥ 4. To show that P(k + 1) holds: 

2k+1 = 2∙2k  

< 2∙ k! (by the inductive hypothesis)

< (k + 1)k!      (because  2 < k+1)

= (k + 1)!

Therefore, 2n < n! holds, for every integer n ≥ 4.

Note that here the basis step is P(4), since P(0), P(1), P(2),  and P(3) are all 
false.  
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Proving Divisibility Results
Example: Use mathematical induction to prove that n3 − n is 
divisible by 3, for every positive integer n.

Solution: Let P(n) be the proposition that n3 − n is divisible by 3.
 BASIS STEP: P(1) is true since 13 − 1 = 0, which is divisible by 3.

 INDUCTIVE STEP: Assume P(k) holds, i.e., k3 − k is divisible by 3, 
for an arbitrary positive integer k. To show that P(k + 1) follows: 

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1) 

= (k3 − k) + 3(k2 + k)

By the inductive hypothesis, the first term (k3 − k) is divisible by 3
and the second term is divisible by 3 since it is an integer multiplied 
by 3. Thus, (k + 1)3 − (k + 1) is divisible by 3. 

Therefore, n3 − n is divisible by 3, for every integer positive integer n.
11



Number of Subsets of a Finite Set
Example: Use mathematical induction to show that if 
S is a finite set with n elements, where n is a 
nonnegative integer, then S has 2n subsets.

(Chapter 6 uses combinatorial methods to prove this result.)

Solution: Let P(n) be the proposition that a set with n
elements has 2n subsets.
 BASIS STEP: P(0) is true, because the empty set has only 

itself as a subset and  20 = 1.

 INDUCTIVE STEP: Assume P(k) is true for an arbitrary 
nonnegative integer k.

continued →
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Number of Subsets of a Finite Set

 Let T be a set with k + 1 elements. Then T = S ∪ {a}, where a ∈ T and   S
= T − {a}   (and hence |S| = k).

 For each subset X of S, there are exactly two subsets of T, i.e., X and           
X ∪ {a}. 

 By the inductive hypothesis S has 2k subsets. Since there are two 
subsets of T  for each subset of S, the number of subsets of T is
2 ∙2k = 2k+1 .

Inductive Hypothesis: Every set with k elements has 2k subsets.
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An Incorrect “Proof” by 
Mathematical Induction
“Proof”: Let P(n) be the statement that every set of n lines in the 
plane, no two of which are parallel, meet in a common point. 
Here is a “proof” that P(n) is true for all positive integers n ≥ 2.  
 BASIS STEP: The statement P(2) is true because any two lines in the 

plane that are not parallel meet in a common point.

 INDUCTIVE STEP: The inductive hypothesis is the statement that 
P(k) is true for the positive integer k ≥ 2, i.e., every set of k lines in 
the plane, no two of which are parallel, meet in a common point.

 We must show that if P(k) holds, then P(k + 1) holds, i.e.,  if every 
set of k lines in the plane, no two of which are parallel, k ≥ 2, meet 
in a common point, then every set of k + 1 lines in the plane, no two 
of which are parallel, meet in a common point. 

continued →
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An Incorrect “Proof” by 
Mathematical Induction

 Consider a set  of k + 1 distinct lines in the plane, no two parallel. By the 
inductive hypothesis, the first k of these lines must meet in a common point p1. 
By the inductive hypothesis, the last k of these lines meet in a common point p2. 

 If p1 and p2 are different points, all lines containing both of them must be the 
same line since two points determine a line. This contradicts the assumption 
that the lines are distinct. Hence, p1 = p2 lies on all k + 1 distinct lines, and 
therefore P(k + 1) holds. Assuming that  k ≥2, distinct lines meet in a common 
point, then every k + 1 lines meet in a common point.

 There must be an error in this proof  since the conclusion is absurd. But where is 
the error?
 Answer: P(k)→ P(k + 1) only holds for  k ≥3. It is not the case that P(2) implies P(3). 

The first two lines must meet in a common point p1 and the second two must meet in a 
common point p2. They do not have to be the same point since only the second line is 
common to both sets of lines.

Inductive Hypothesis: Every set of k lines in the plane, where   
k ≥ 2, no two of which are parallel, meet in a common point.
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Guidelines:
Mathematical Induction Proofs
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 Express the statement in the form “for all n ≥ b, P(n)” 
for a fixed integer b.

 Write “BASIS STEP”
 Show P(b) is true

 Write “INDUCTIVE STEP”
 State inductive hypothesis in the form “Assume P(k) is

true for an arbitrary integer k ≥ b”

 State what needs to be proven
 Write out what P(k+1) is

continued →



Guidelines:
Mathematical Induction Proofs
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 Assume P(k), and prove P(k+1)

 Be sure proof is valid for all integers k ≥ b, including
when k = b.

 Identify when the INDUCTIVE STEP concludes, such
as by saying “this completes the inductive step”

 When finished, state the conclusion. “By
mathematical induction, P(n) is true for all integers n
≥ b”


