Recursive Deffinitions and Structural Induction

Section 5.3

Section Summary

- Recursively Defined Functions
- Recursively Defined Sets and Structures
- Structural Induction

Recursively Defined Functions

Definition: A recursive or inductive definition of a function consists of two steps.

- BASIS STEP: Specify the value of the function at zero.
- RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smaller integers.
- A function $f(n)$ is the same as a sequence a_{0}, a_{1}, \ldots where $f(i)=a_{i}$.

Recursively Defined Functions

Ex: Suppose f is defined by:

$$
\begin{aligned}
& f(0)=3 \\
& f(n+1)=2 f(n)+3
\end{aligned}
$$

Find $f(1), f(2), f(3), f(4)$

Solution:

- $f(1)=2 \cdot f(0)+3=2 \cdot 3+3=9$
- $f(2)=2 \cdot f(1)+3=2 \cdot 9+3=21$
- $f(3)=2 \cdot f(2)+3=2 \cdot 21+3=45$
- $f(4)=2 \cdot f(3)+3=2 \cdot 45+3=93$

Recursively Defined Functions

Ex: Give a recursive definition of the factorial function $f(n)=n$!

Solution:

$$
\begin{aligned}
& \text { Basis Step: } f(0)=1 \\
& \text { Recursive Step: } f(n+1)=(n+1) \cdot f(n)
\end{aligned}
$$

Recursively Defined Functions

Ex: Give a recursive definition of a^{n}, where a is a nonzero real number and n is a nonnegative integer.

Solution:

$$
\begin{array}{ll}
\text { Basis Step: } & a^{0}=1 \\
\text { Recursive Step: } & a^{n+1}=a \cdot a^{n}, \text { for } n=0,1,2 \ldots
\end{array}
$$

Recursively Defined Functions

Ex: Give a recursive definition of $\sum_{k=0}^{n} a_{k}$.
Solution: The first part (basis step) of the definition is

$$
\sum_{k=0}^{0} a_{k}=a_{0}
$$

The second part (recursive step) is

$$
\sum_{k=0}^{n+1} a_{k}=\left(\sum_{k=0}^{n} a_{k}\right)+a_{n+1}
$$

Recursively Defined Sets and Structures

Recursive definitions of sets have two parts:

- The basis step specifies an initial collection of elements.
- The recursive step gives the rules for forming new elements in the set from those already known to be in the set.
- The exclusion rule specifies that the set contains nothing other than those elements specified in the basis step and generated by applications of the rules in the recursive step.
- We will always assume this is true, even if not explicitly mentioned.
- We will later develop a form of induction, called structural induction, to prove results about recursively defined sets.

Recursively Defined Sets and Structures

Ex: Give a recursive definition a set containing of all positive multiples of 3 .
BASIS STEP: $3 \in S$.
RECURSIVE STEP: If $x \in S$ and $y \in S$, then $x+y$ is in S.

- Initially 3 is in S, then $3+3=6$, then $3+6=9$, then $3+9=12$, then $3+12=15$, etc.

Ex: Give a recursive definition of the natural numbers \mathbf{N}. BASIS STEP: $0 \in \mathbf{N}$. RECURSIVE STEP: If n is in \mathbf{N}, then $n+1$ is in \mathbf{N}.

- Initially 0 is in S, then $0+1=1$, then $1+1=2$, then $+1=3$, then $3+1=4$, etc.

Strings

Definition: The set Σ^{*} of strings over the alphabet Σ :
BASIS STEP: $\lambda \in \Sigma^{*}$ (λ is the empty string)
RECURSIVE STEP: If w is in Σ^{*} and x is in Σ, then $w x \in \Sigma^{*}$.

Ex: If $\Sigma=\{0,1\}$, the strings in in Σ^{*} are the set of all bit strings: $\lambda, 0,1,00,01,10,11$, etc.

Ex: If $\Sigma=\{a, b\}$, show that $a a b$ is in Σ^{*}.

- Since $\lambda \in \Sigma^{*}$ and $a \in \Sigma, \quad a \in \Sigma^{*}$.
- Since $a \in \Sigma^{*}$ and $a \in \Sigma, \quad a a \in \Sigma^{*}$.
- Since $a a \in \Sigma^{*}$ and $b \in \Sigma, a a b \in \Sigma^{*}$.

String Concatenation

Definition: Two strings can be combined via the operation of concatenation. Let Σ be a set of symbols and Σ^{*} be the set of strings formed from the symbols in Σ. We can define the concatenation of two strings, denoted by \cdot, recursively as follows:
BASIS STEP: If $w \in \Sigma^{*}$, then $w \cdot \lambda=w$
RECURSIVE STEP: If $w_{1} \in \Sigma^{*}$ and $w_{2} \in \Sigma^{*}$ and $\mathrm{x} \in \Sigma$, then

$$
w_{1} \cdot\left(w_{2} x\right)=\left(w_{1} \cdot w_{2}\right) x
$$

- Often $w_{1} \cdot w_{2}$ is written as $w_{1} w_{2}$.
- Ex: If $w_{1}=a b r a$ and $w_{2}=c a d a b r a$, the concatenation $w_{1} w_{2}=a b r a c a d a b r a$.

Length of a String

Ex: Give a recursive definition of $l(w)$, the length of the string w.

Solution: The length of a string can be recursively defined by:
BASIS STEP: $l(\lambda)=0$;
RECURSIVE STEP: $l(w x)=l(w)+1$ if $w \in \Sigma^{*}$ and $x \in \Sigma$.

Well-Formed Formulae in Propositional

 LogicDefinition: The set of well-formed formulae in propositional logic involving T, F, propositional variables, and operators from the set $\{\neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$.
BASIS STEP: T,F, and s, where s is a propositional variable, are well-formed formulae.
RECURSIVE STEP: If E and F are well formed formulae, then $(\neg E),(E \wedge F),(E \vee F),(E \rightarrow F),(E \leftrightarrow F)$, are wellformed formulae.
Ex: $((p \vee q) \rightarrow(q \wedge \mathrm{~F}))$ is a well-formed formula. $p q \wedge \quad$ is not a well formed formula.

Rooted Trees

Definition: The set of rooted trees, where a rooted tree consists of a set of vertices containing a distinguished vertex called the root, and edges connecting these vertices, can be defined recursively by these steps:
BASIS STEP: A single vertex r is a rooted tree.
RECURSIVE STEP: Suppose that $T_{1}, T_{2}, \ldots, T_{n}$ are disjoint rooted trees with roots $r_{1}, r_{2}, \ldots, r_{n}$, respectively. Then the graph formed by starting with a root r, which is not in any of the rooted trees $T_{1}, T_{2}, \ldots, T_{n}$, and adding an edge from r to each of the vertices $r_{1}, r_{2}, \ldots, r_{n}$, is also a rooted tree.

Building Up Rooted Trees

- Trees are studied extensively in Chapter 11.
- Next we look at a special type of tree, the full binary tree.

Full Binary Trees

Definition: The set of full binary trees can be defined recursively by these steps.
BASIS STEP: There is a full binary tree consisting of only a single vertex r.
RECURSIVE STEP: If T_{1} and T_{2} are disjoint full binary trees, there is a full binary tree, denoted by $T_{1} \cdot T_{2}$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_{1} and the right subtree T_{2}.

Building Up Full Binary Trees

Structural Induction

Definition: To prove a property of the elements of a recursively defined set, we use structural induction. BASIS STEP: Show that the result holds for all elements specified in the basis step of the recursive definition.
RECURSIVE STEP: Show that if the statement is true for each of the elements used to construct new elements in the recursive step of the definition, the result holds for these new elements.

- The validity of structural induction can be shown to follow from the principle of mathematical induction.

Full Binary Trees

Definition: The height $h(T)$ of a full binary tree T is defined recursively as follows:

- BASIS STEP: The height of a full binary tree T consisting of only a root r is $h(T)=0$.
- RECURSIVE STEP: If T_{1} and T_{2} are full binary trees, then the full binary tree $T=T_{1} \cdot T_{2}$ has height $h(T)=1+\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)$.
- The number of vertices $n(T)$ of a full binary tree T satisfies the following recursive formula:
- BASIS STEP: The number of vertices of a full binary tree T consisting of only a root r is $n(T)=1$.
- RECURSIVE STEP: If T_{1} and T_{2} are full binary trees, then the full binary tree $T=T_{1} \cdot T_{2}$ has the number of vertices

$$
n(T)=1+n\left(T_{1}\right)+n\left(T_{2}\right)
$$

Structural Induction and Binary Trees

Theorem: If T is a full binary tree, then $n(T) \leq 2^{h(T)+1}-1$. Proof: Use structural induction.

- BASIS STEP: The result holds for a full binary tree consisting only of a root, $n(T)=1$ and $h(T)=0$. Hence, $n(T)=1 \leq 2^{0+1}-1=1$.
- RECURSIVE STEP: Assume $n\left(T_{1}\right) \leq 2^{h(T 1)+1}-1$ and also $n\left(T_{2}\right) \leq 2^{h(T 2)+1}-1$ whenever T_{1} and T_{2} are full binary trees.

$$
\begin{aligned}
n(T) & =1+n\left(T_{1}\right)+n\left(T_{2}\right) & & \text { (by recursive formula of } n(T)) \\
& \leq 1+\left(2^{h\left(T_{1}\right)+1}-1\right)+\left(2^{h\left(T_{2}\right)+1}-1\right) & & \text { (by inductive hypothesis) } \\
& \leq 2 \cdot \max \left(2^{h\left(T_{1}\right)+1}, 2^{h\left(T_{2}\right)+1}\right)-1 & & \\
& =2 \cdot 2^{\max \left(h\left(T_{1}\right), h\left(T_{2}\right)\right)+1}-1 & & \left(\max \left(2^{x}, 2^{y}\right)=2^{\max (x, y)}\right)
\end{aligned}
$$

$=2 \cdot 2^{h(T)}-1$
(by recursive definition of $h(T)$)
$=2^{h(T)+1}-1$

