The Pigeonhole Principle

Section 6.2

Section Summary

- The Pigeonhole Principle
- The Generalized Pigeonhole Principle

Where the pigeons come in...

- If a flock of 13 pigeons roosts in a set of 12 pigeonholes, one of the pigeonholes must have more than 1 pigeon.

(a)

(b)

(c)
- There are more pigeons than pigeonholes.

The Pigeonhole Principle

Pigeonhole Principle: If k is a positive integer and $k+1$ objects are placed into k boxes, then at least one box contains two or more objects.

Proof (by contradiction): Suppose we have $k+1$ objects and none of the k boxes has more than one object. Then the total number of objects would be at most k. This contradicts that we have $k+1$ objects.

The Pigeonhole Principle

Corollary 1: A function f from a set with $k+1$ elements to a set with k elements is not one-to-one.

Proof: Use the pigeonhole principle.

- Create a box for each element y in the codomain of f.
- Put in the box for y all of the elements x from the domain such that $f(x)=y$.
- Because there are $k+1$ elements and only k boxes, at least one box has two or more elements.
Hence, f can't be one-to-one.

The Pigeonhole Principle

Example: Among any group of 367 people, there must be at least two with the same birthday, because there are only 366 possible birthdays.

Example: In a group of 27 English words, there must be at least two that begin with the same letter, because there are 26 letters in the English alphabet.

The Generalized Pigeonhole Principle

 The Generalized Pigeonhole Principle: If N objects are placed into k boxes, then there is a box containing at least $\lceil N / k\rceil$ objects.Proof (by contradiction): Suppose we have N objects and none of the k boxes contains more than $\lceil N / k\rceil-1$ objects. Then the total number of objects is at most

$$
k\left(\left\lceil\frac{N}{k}\right\rceil-1\right)<k\left(\left(\frac{N}{k}+1\right)-1\right)=N
$$

using the inequality $\lceil N / k\rceil<(N / k)+1$. This contradicts that there are N objects.

The Generalized Pigeonhole Principle

Example: Among 100 people there are at least $\lceil 100 / 12\rceil=9$ who were born in the same month.

Example: Among 26 students and five possible grades (A,B,C,D,F), there are at least $[26 / 5\rceil=6$ students who will get the same grade.

The Generalized Pigeonhole Principle

Example: a) How many cards (minimum) must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?
b) How many (minimum) must be selected to guarantee that at least three hearts are selected?

Solution: (a) We assume four boxes; one for each suit. Using the generalized pigeonhole principle, at least one box contains at least $[N / 4\rceil$ cards. At least three cards of one suit are selected if $\lceil N / 4\rceil \geq 3$. The smallest integer N such that $[N / 4] \geq 3$ is

$$
N=2 \cdot 4+1=9 \text { cards. }
$$

The Generalized Pigeonhole Principle

Example: a) How many cards (minimum) must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?
b) How many (minimum) must be selected to guarantee that at least three hearts are selected?

Solution: (b) A deck contains 13 hearts and 39 cards which are not hearts. In the worst case, we select all clubs, diamonds, and spades first - 39 cards in all. The next three cards will be all hearts, so we may need to select 42 cards to get three hearts. (Note that the generalized pigeonhole principle is not used here.)

