

Key Concepts:

- Two propositions are equivalent ($p \equiv q$) if they always have the same truth-value.
- A list of compound propositions is consistent if it's possible to assign truth-values to the atomic propositions such that each compound proposition in the list is true.
- A tautology is a proposition that's always true.
- A contradiction is a proposition that's always false.
- A contingency is a proposition that's neither a tautology nor a contradiction.
- A compound proposition is satisfiable if there is an assignment of truth values to its variables that make it true.
- A argument in propositional logic is a sequence of propositions. All but the final proposition are called premises. The last statement is the conclusion.
- An argument is valid if the premises imply the conclusion.
- An argument form is an argument that is valid no matter what propositions are substituted into its propositional variables.
- If p, then q
- If p, q
- qunless $\neg p$
- q if p
- q whenever p
- q follows from p
- p implies q
- p only if q
- q when p
- p is sufficient for q
- q is necessary for p
- It is necessary to q to p
- A necessary condition for p is q
- A sufficient condition for q is p

$$
\text { Ways of expressing } p \leftrightarrow q \text { : }
$$

- p is necessary and sufficient for q
- If p then q, and conversely
- p iff q

Law		
De Morgan's	$\begin{aligned} & \neg \exists x P(x) \equiv \forall x \neg P(x) \\ & \neg \forall x P(x) \equiv \exists x \neg P(x) \end{aligned}$	
	$\neg(p \wedge q) \equiv \neg p \vee \neg q$	$\neg(p \vee q) \equiv \neg p \wedge \neg q$
Double negation	$\neg(\neg \mathrm{p}) \equiv \mathrm{p}$	
Negation	$p \wedge \neg \mathrm{p} \boldsymbol{F}$	$p \vee \neg \mathrm{p}$ ¢
Identity	$\mathrm{p} \wedge \mathbf{T} \equiv \mathrm{p}$	$p \vee F=p$
Domination	p^F $=$ F	$\mathrm{p} V \mathrm{~T}$ ¢ \mathbf{T}
Idempotent	$p \wedge p \equiv p$	pvp $=\mathrm{p}$
Communative	$p \wedge q=q \wedge p$	$p \vee q=q \vee p$
Associative	$(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$	$(\mathrm{p} v \mathrm{q}) \mathrm{vr} \equiv \mathrm{pv}(\mathrm{q} v \mathrm{r})$
Distributive	$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$	$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
Absorption	$p \wedge(p \vee q) \equiv p$	$p \vee(p \wedge q) \equiv p$
Implication	$p \rightarrow q \equiv \neg p \vee q$	
Contrapositive	$p \rightarrow q \equiv \neg q \rightarrow \neg p$	

Universal Quantifier: $\forall x P(x)$

- "For all $x, P(x)$ "
- "For any arbitrary $\mathrm{x}, \mathrm{P}(\mathrm{x})$ "
- "For every $x, P(x)$ "
- "For each $x, P(x)$ "

Existential Quantifier: $\operatorname{\exists xP}(\mathrm{x})$

- "There exists an x such that $P(x)$ "
- "There is an x such that $P(x)$ "
- "For some x, P(x)"
- "There is at least one x such thatP (x) "

Rules of Inference

Proof methods and techniques

Methods of proving $\forall x p(x) \rightarrow q(x)$

Trivial proof q is known
Vacuous proof $\neg p$ is known
Direct proof Assume p. Show q.
Proof by contraposition Assume $\neg q$. Show $\neg p$.
Proof by contradiction Assume the statement is false and derive a contradiction.
Assume $\neg q \wedge p$. Show $r \wedge \neg r$

Steps to prove the biconditional: $\mathrm{p} \leftrightarrow \mathrm{q}$

1. Use any method to prove $\mathrm{p} \rightarrow \mathrm{q}$
2. Use any method to prove $q \rightarrow p$

Methods of proving existence: $\exists x \mathrm{P}(\mathrm{x})$

Constructive Find an explicit value c for which $P(c)$ is true.
Nonconstructive $\begin{aligned} & \text { Assume no c exists which } P(c) \text { is true and derive contradiction. } \\ & \text { Assume } \forall x \neg P(x) \text {. Show } r \wedge \neg r\end{aligned}$ Assume $\forall x \neg P(x)$. Show $r \wedge \neg r$
[there exists one and only one x such that $P(x)$]
Steps to prove unique existence: $\exists x P(x) \wedge(\forall y P(y) \rightarrow y=x)$

1. Prove existence. $\exists x P(x)$
2. Prove uniqueness. $\forall y P(y) \rightarrow y=x$
