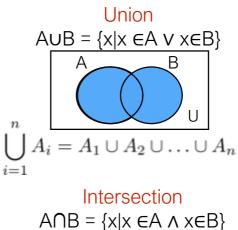
<u>Terminology</u>	<u>Notation</u>	<u>Definition</u>	<u>Meaning</u>
C is a <u>subset</u> of D	C⊆D	$\forall x (x \in C \rightarrow x \in D)$	Every element of C is also an element of D
C is a <u>proper</u> <u>subset</u> of D	C⊂D	$\forall x(x \in C \rightarrow x \in D) \land \exists x(x \in D \land x \notin C)$	C⊆D but C≓D. Every element of C is also an element of D, but D has at least one element that C doesn't have
C is <u>equal</u> to D	C=D	$\forall x(x \in C \leftrightarrow x \in D)$	C and D have exactly the same elements

N = natural numbers {0,1,2,...}

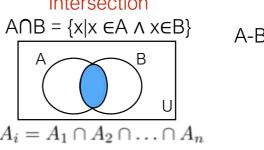
- **Z** = integers {...,-1,0,1,...}
- **Z**⁺ = positive integers {1,2,3,..}
- **R** = real numbers (ex: 1.5, $-\pi$, 40)
- \mathbf{R}^{+} = positive real numbers (ex: π , 4.2)
- **Q** = rational numbers
- **U** = the universal set
- $\boldsymbol{\phi}$ = the empty set

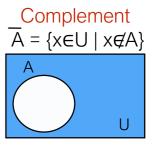
Set Identities & Operations:

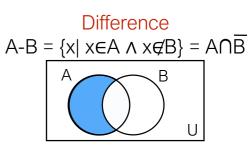
Law	Union	Intersection
Identity	AUØ=A	ANU=A
Domination	AUU=U	A∩ø=ø
Idempotent	AUA=A	ANA=A
Double complement	$\overline{(\overline{A})} = A$	
Communative	ΑυΒ=ΒυΑ	ΑΛΒ=ΒΛΑ
Associative	AU(BUC)=(AUB)UC	$A\cap(B\cap C)=(A\cap B)\cap C$
Distributive	AU(BNC)=(ANB)U(AN	$\frac{A \cap (B \cup C) = (A \cup B) \cap (A \cup C)}{C}$
De Morgan's	A∪B = A ∩ B	A∩B = A ∪ B
Absorption	AU(ANB)=A	A∩(A∪B)=A
Complement	AUA = U	ANA =Ø



i=1







Four different ways to prove A=B

1. Produce a series of identical sets beginning with A and

ending with B

- 2. Prove that both $A \subseteq B$ and $B \subseteq A$.
- 3. Use set builder notation and propositional logic.
- 4. Membership tables.

Key Set Concepts:

- A set is an unordered collection of objects. It can be described via:
 - roster method: list all elements
 - set builder notation: $S = \{x | P(x)\}$
- $x \in S$ means x is an element of S.
- $x \notin S$ means x is not an element of S.
- For every set S, $\phi \subseteq S$ and $S \subseteq S$.
- The <u>cardinality</u> of a finite set S, denoted |S|, is the number of distinct elements of S.
- The <u>power set</u> of S, denoted P(S), is the set of all subsets of S. If |S|=n, then $|P(S)|=2^n$.
- An <u>n-tuple</u> is an ordered collection of *n* objects, denoted as (a₁, a₂, ..., a_n)
 - two n-tuples are equal if and only if their corresponding elements are equal
- The <u>Cartesian Product</u> AxB is the set of all ordered pairs between elements of A and elements of B.
 - $AxB = \{(a,b) \mid a \in A \land b \land B\}$
- The <u>Cartesian Product</u> A₁xA₂x...xA_n is the set of all ordered n-tuples between elements of A₁, A₂, ... A_n.
 - $A_1xA_2x...xA_n = \{(a_1, a_2, ..., a_n) \mid a_j \in A_j \text{ for } j=1,2,...n\}$
- $\forall x \in S (P(x))$ is shorthand for $\forall x(x \in S \rightarrow P(x))$
- $\forall x \in S (P(x))$ is shorthand for $\forall x(x \in S \rightarrow P(x))$
- The truth set of some predicate P(x) for a domain D is defined as $\{x \in D | P(x)\}$
- The Inclusion-Exclusion principle states that |A∪B|=|A|+|B|-|A∩B|

Key Function Concepts:

- A <u>function</u> f from a set A to B, denoted f: $A \rightarrow B$, is an an assignment of each element of A to exactly one element of B
 - A is the domain of f
 - B is the <u>codomain</u> of f
 - f(A) is the <u>range</u> of f
 - If f(a)=b, then b is the <u>image</u> of a under f, and a is the <u>preimage</u> of b.
- Two functions are <u>equal</u> when they have the same domain, same codomain, and map each element of the domain to the same element of the codomain.
- A function can be represented via:
 - explicit statement of assignments
 - a formula
 - computer program
- Let $f: B \rightarrow C$ and $g: A \rightarrow B$. The <u>composition</u> of f with g is fog: $A \rightarrow C$, where $(f \circ g)(a) = f(g(a))$.
- The <u>floor</u> function, denoted f(x)=[x], is the largest integer ≤ x.
- The <u>ceiling</u> function, denoted f(x)=[x], is the smallest integer ≥ x.
- Given a bijective function *f*:*C*→*D*, the inverse *f* ¹:*D*→*C* is defined as f⁻¹(y)=x if and only if f(x)=y. No inverse exists unless *f* is bijective.

Key Sequence Concepts:

- A <u>sequence</u> {a_n} is a function from the subset of integers to the set S. It provides an ordered list
 of elements.
- a_n is used to represent f(n), and is called the *n*th <u>term</u> of the sequence.
- A <u>geometric progression</u> is a sequence of the form a, ar, ar², ar³, ..., arⁿ
- An arithmetic progression is a sequence of the form a, a+d, a+2d,..., a+nd
- A <u>string</u> is a finite sequence of characters from a finite set (an alphabet)
 - the empty string is represented by λ
 - the length of a string is the number of characters in it
- A <u>recurrence relation</u> for a sequence {a_n} is an equation that expresses a_n in terms of one or more of previous terms of the sequence
 - It requires <u>initial conditions</u> which specify the terms that precede the first term where the recurrence relation takes effect
 - A sequence is a <u>solution</u> of a recurrence relation if its terms satisfy it
- The Fibonacci sequence f_0, f_1, f_2, \ldots is defined by
 - initial conditions: $f_0=0$ and $f_1=1$
 - recurrence relation: $f_n=f_{n-1} + f_{n-2}$
- Solve the recurrence relation which generates a sequence by finding a <u>closed formula</u> for the nth term of the sequence (doesn't rely on previous terms), using an iterative solution of either forward substitution or backwards substitution
- Sum of terms a_m , a_{m+1} , ..., a_n from the sequence $\{a_n\}$ is denoted by

$$\sum_{j=m}^{n} a_j$$

TABLE 2 Some Useful Summation Formulae.		
Sum	Closed Form	
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	

- A function $f: C \rightarrow D$ is <u>injective</u> (one-to-one) if and only if $\forall xy \in C f(x) = f(y) \rightarrow x = y$
- A function $f: C \rightarrow D$ is surjective (onto) if and only if $\forall y \in D \exists x \in C f(x)=y$. In this instance, f(C)=D.
- A function $f: C \rightarrow D$ is bijective (one-to-one correspondence) if and only if f is both injective and surjective.

