Terminology	Notation	Definition	Meaning	$\mathbf{N}=$ natural numbers $\{0,1,2, \ldots\}$
C is a subset of D	C¢D	$\forall x(x \in C \rightarrow x \in D)$	Every element of C is also an element of D	$\mathbf{Z}=$ integers $\{\ldots,-1,0,1, \ldots\}$ $\mathbf{Z}^{+}=$positive integers $\{1,2,3, .$.
C is a proper subset of D	CcD	$\forall x(x \in C \rightarrow x \in D) \wedge \exists x(x \in D \wedge x \notin C)$	$C \subseteq D$ but $C=D$. Every element of C is also an element of D, but D has at least one element that C doesn't have	$\begin{aligned} & \mathbf{R}=\text { real numbers (ex: } 1.5,-\pi, 40) \\ & \mathbf{R}^{+}=\text {positive real numbers }(e x: \pi, 4.2) \\ & \mathbf{Q}=\text { rational numbers } \\ & \mathbf{U}=\text { the universal set } \end{aligned}$
C is equal to D	$\mathrm{C}=\mathrm{D}$	$\forall x(x \in C \leftrightarrow x \in D)$	C and D have exactly the same elements	\emptyset = the empty set

Four different ways to prove $A=B$

1. Produce a series of identical sets beginning with A and ending with B
2. Prove that both $A \subseteq B$ and $B \subseteq A$.
3. Use set builder notation and propositional logic.
4. Membership tables.

Key Set Concepts:

- A set is an unordered collection of objects. It can be described via:
- roster method: list all elements
- set builder notation: $S=\{x \mid P(x)\}$
- $x \in S$ means x is an element of S.
- $x \notin S$ means x is not an element of S.
- For every set $S, \emptyset \subseteq S$ and $S \subseteq S$.
- The cardinality of a finite set S , denoted $|\mathrm{S}|$, is the number of distinct elements of S.
- The power set of S , denoted $P(\mathrm{~S})$, is the set of all subsets of S . If $|\mathrm{S}|=n$, then $|P(S)|=2^{n}$.
- An n-tuple is an ordered collection of n objects, denoted as ($a_{1}, a_{2}, \ldots, a_{n}$)
- two n-tuples are equal if and only if their corresponding elements are equal
- The Cartesian Product $A x B$ is the set of all ordered pairs between elements of A and elements of B.
- $A \times B=\{(a, b) \mid a \in A \wedge b \wedge B\}$
- The Cartesian Product $A_{1} X A_{2} \times \ldots \times A_{n}$ is the set of all ordered n-tuples between elements of $A_{1}, A_{2}, \ldots A_{n}$.
- $A_{1} x A_{2} x \ldots x A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{j} \in A_{j}\right.$ for $\left.j=1,2, \ldots n\right)$
- $\forall x \in S(P(x))$ is shorthand for $\forall x(x \in S \rightarrow P(x))$
- $\forall x \in S(P(x))$ is shorthand for $\forall x(x \in S \rightarrow P(x))$
- The truth set of some predicate $P(x)$ for a domain D is defined as $\{x \in D \mid P(x)\}$
- The Inclusion-Exclusion principle states that $|A \cup B|=|A|+|B|-|A \cap B|$

Set Identities \& Operations:

$\underline{\text { Law }}$	$\underline{U n i o n}$	$\underline{\text { Intersection }}$
Identity	$A \cup \emptyset=A$	$A \cap U=A$
Domination	$A \cup U=U$	$A \cap \varnothing=\varnothing$
Idempotent	$A \cup A=A$	$A \cap A=A$
Double comple ment		$\overline{(\bar{A})}=A$
Communative	$A \cup B=B \cup A$	$A \cap B=B \cap A$
As sociative	$A \cup(B \cup C)=(A \cup B) \cup C$	$A \cap(B \cap C)=(A \cap B) \cap C$
Distributive	$A \cup(B \cap C)=(A \cap B) \cup(A \cap$	$A \cap(B \cup C)=(A \cup B) \cap(A \cup)$
De Morgan's	$A \cup B=A \cap B$	$A \cap B=A \cup B$
Absorption	$A \cup(A \cap B)=A$	$A \cap(A \cup B)=A$
Complement	$A \cup A=U$	$A \cap A=\varnothing$

Complement

Difference
$A-B=\{x \mid x \in A \wedge x \notin B\}=A \cap \bar{B}$

Key Function Concepts:

- A function f from a set A to B, denoted $f: A \rightarrow B$, is an an assignment of each element of A to exactly one element of B
- A is the domain of f
- B is the codomain of f
- $f(A)$ is the range of f
- If $f(a)=b$, then b is the image of a under f, and a is the preimage of b.
- Two functions are equal when they have the same domain, same codomain, and map each element of the domain to the same element of the codomain.
- A function can be represented via:
- explicit statement of assignments
- a formula
- computer program
- Let $f: B \rightarrow C$ and $g: A \rightarrow B$. The composition of f with g is $f \circ g$: $A \rightarrow C$, where $(f \circ g)(a)=f(g(a))$.
- The floor function, denoted $f(x)=\lfloor x\rfloor$, is the largest integer $\leq x$.
- The ceiling function, denoted $f(x)=\lceil x\rceil$, is the smallest integer $\geq \mathrm{x}$.
- Given a bijective function $f: C \rightarrow D$, the inverse f ${ }^{1}: D \rightarrow C$ is defined as $f^{-1}(y)=x$ if and only if $f(x)=y$. No inverse exists unless f is bijective.

Key Sequence Concepts:

- A sequence $\left\{a_{n}\right\}$ is a function from the subset of integers to the set S. It provides an ordered list of elements.
- a_{n} is used to represent $f(n)$, and is called the nth term of the sequence.
- A geometric progression is a sequence of the form $a, a r, a r^{2}, a r^{3}, \ldots, a r^{n}$
- An arithmetic progression is a sequence of the form $a, a+d, a+2 d, \ldots, a+n d$
- A string is a finite sequence of characters from a finite set (an alphabet)
- the empty string is represented by λ
- the length of a string is the number of characters in it
- A recurrence relation for a sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of previous terms of the sequence
- It requires initial conditions which specify the terms that precede the first term where the recurrence relation takes effect
- A sequence is a solution of a recurrence relation if its terms satisfy it
- The Fibonacci sequence $f_{0}, f_{1}, f_{2}, \ldots$ is defined by
- initial conditions: $\mathrm{f}_{0}=0$ and $\mathrm{f}_{1}=1$
- recurrence relation: $f_{n}=f_{n-1}+f_{n-2}$
- Solve the recurrence relation which generates a sequence by finding a closed formula for the nth term of the sequence (doesn't rely on previous terms), using an iterative solution of either forward substitution or backwards substitution
- Sum of terms $\mathrm{am}_{\mathrm{m}}, \mathrm{a}_{\mathrm{m}+1}, \ldots, \mathrm{a}_{\mathrm{n}}$ from the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is denoted by $\sum_{j=m}^{n} a_{j}$

TABLE 2 Some Useful Summation Formulae.	
Sum	Closed Form
$\sum_{k=0}^{n} a r^{k}(r \neq 0)$	$\frac{a r^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^{2}$	$\frac{n(n+1)(2 n+1)}{6}$
$\sum_{k=1}^{n} k^{3}$	$\frac{n^{2}(n+1)^{2}}{4}$
$\sum_{k=0}^{\infty} x^{k},\|x\|<1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} k x^{k-1},\|x\|<1$	$\frac{1}{(1-x)^{2}}$

