Chapter 1: An Introduction to Computer Science

Invitation to Computer Science, C++ Version, Third Edition
Objectives

In this chapter, you will learn about:

- The definition of computer science
- Algorithms
- A brief history of computing
- Organization of the text
Introduction

Common misconceptions about computer science:

- Computer science is the study of computers
- Computer science is the study of how to write computer programs
- Computer science is the study of the uses and applications of computers and software
The Definition of Computer Science

- Gibbs and Tucker definition of computer science
 - The study of algorithms, including their:
 - Formal and mathematical properties
 - Hardware realizations
 - Linguistic realizations
 - Applications
The Definition of Computer Science (continued)

- Computer scientist designs and develops algorithms to solve problems
- Operations involved in designing algorithms:
 - Formal and mathematical properties
 - Studying the behavior of algorithms to determine whether they are correct and efficient
 - Hardware realizations
 - Designing and building computer systems that are able to execute algorithms
The Definition of Computer Science (continued)

- Linguistic realizations
 - Designing programming languages and translating algorithms into these languages

- Applications
 - Identifying important problems and designing correct and efficient software packages to solve these problems
The Definition of Computer Science (continued)

- **Algorithm**
 - Dictionary definition
 - Procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation
 - A step-by-step method for accomplishing a task
 - Informal description
 - An ordered sequence of instructions that is guaranteed to solve a specific problem
The Definition of Computer Science (continued)

- An algorithm is a list that looks like
 - STEP 1: Do something
 - STEP 2: Do something
 - STEP 3: Do something
 - ...
 - ...
 - ...
 - ...
 - STEP N: Stop, you are finished
The Definition of Computer Science (continued)

- Categories of operations used to construct algorithms
 - Sequential operations
 - Carries out a single well-defined task; when that task is finished, the algorithm moves on to the next operation
 - Examples:
 - Add 1 cup of butter to the mixture in the bowl
 - Subtract the amount of the check from the current account balance
 - Set the value of x to 1
Conditional operations

- Ask a question and then select the next operation to be executed on the basis of the answer to that question

Examples

- If the mixture is too dry, then add one-half cup of water to the bowl
Conditional operations examples (continued):

- If the amount of the check is less than or equal to the current account balance, then cash the check; otherwise, tell the person that the account is overdrawn.

- If x is not equal to 0, then set y equal to $1/x$; otherwise, print an error message that says we cannot divide by 0.
The Definition of Computer Science (continued)

- Iterative operations
 - Tell us to go back and repeat the execution of a previous block of instructions
 - Examples
 - Repeat the previous two operations until the mixture has thickened
 - While there are still more checks to be processed, do the following five steps
 - Repeat steps 1, 2, and 3 until the value of y is equal to 11
The Definition of Computer Science (continued)

- If we can specify an algorithm to solve a problem, we can automate its solution.

- Computing agent:
 - The machine, robot, person, or thing carrying out the steps of the algorithm.
 - Does not need to understand the concepts or ideas underlying the solution.
The Formal Definition of an Algorithm

- **Algorithm**
 - A well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time

- **Unambiguous operation**
 - An operation that can be understood and carried out directly by the computing agent without needing to be further simplified or explained
The Formal Definition of an Algorithm (continued)

- A primitive operation (or a primitive) of the computing agent
 - Operation that is unambiguous for computing agent
 - Primitive operations of different individuals (or machines) vary
 - An algorithm must be composed entirely of primitives
- Effectively computable
 - Computational process exists that allows computing agent to complete that operation successfully
The Formal Definition of an Algorithm (continued)

- The result of the algorithm must be produced after the execution of a finite number of operations

 - Infinite loop
 - The algorithm has no provisions to terminate
 - A common error in the designing of algorithms
The Importance of Algorithmic Problem Solving

- Algorithmic solutions can be:
 - Encoded into some appropriate language
 - Given to a computing agent to execute

- The computing agent
 - Would mechanically follow these instructions and successfully complete the task specified
 - Would not have to understand
 - Creative processes that went into discovery of solution
 - Principles and concepts that underlie the problem
The Early Period: Up to 1940

- 3,000 years ago: Mathematics, logic, and numerical computation
 - Important contributions made by the Greeks, Egyptians, Babylonians, Indians, Chinese, and Persians
- 1614: Logarithms
 - Invented by John Napier to simplify difficult mathematical computations
- Around 1622: First slide rule created
1672: The Pascaline
- Designed and built by Blaise Pascal
- One of the first mechanical calculators
- Could do addition and subtraction

1674: Leibnitz’s Wheel
- Constructed by Gottfried Leibnitz
- Mechanical calculator
- Could do addition, subtraction, multiplication, and division
Figure 1.4
The Pascaline: One of the Earliest Mechanical Calculators
The Early Period: Up to 1940 (continued)

- 1801: The Jacquard loom
 - Developed by Joseph Jacquard
 - Automated loom
 - Used punched cards to create desired pattern

- 1823: The Difference Engine
 - Developed by Charles Babbage
 - Did addition, subtraction, multiplication, and division to 6 significant digits
 - Solved polynomial equations and other complex mathematical problems
The Early Period: Up to 1940 (continued)

- 1823: The Difference Engine
 - Developed by Charles Babbage
 - Capabilities:
 - Addition, subtraction, multiplication, and division to 6 significant digits
 - Solve polynomial equations and other complex mathematical problems
Figure 1.5
Drawing of the Jacquard Loom
The Early Period: Up to 1940 (continued)

- 1830s: The Analytic Engine
 - Designed by Charles Babbage
 - More powerful and general-purpose computational machine
 - Components were functionally similar to the four major components of today’s computers
 - Mill (modern terminology: arithmetic/logic unit)
 - Store (modern terminology: memory)
 - Operator (modern terminology: processor)
 - Output (modern terminology: input/output)
The Early Period: Up to 1940 (continued)

- 1890: U.S. census carried out with programmable card processing machines
 - Built by Herman Hollerith
 - These machines could automatically read, tally, and sort data entered on punched cards
The Birth of Computers: 1940–1950

- Development of electronic, general-purpose computers
 - Did not begin until after 1940
 - Was fueled in large part by needs of World War II
- Early computers
 - Mark I
 - ENIAC
 - ABC system
 - Colossus
 - Z1
Figure 1.6
Photograph of the ENIAC Computer
The Birth of Computers:
1940–1950

- Stored program computer model
 - Proposed by John Von Neumann in 1946
 - Stored binary algorithm in the computer’s memory along with the data
 - Is known as the Von Neumann architecture
 - Modern computers remain, fundamentally, Von Neumann machines
- First stored program computers
 - EDVAC
 - EDSAC
The Modern Era: 1950 to the Present

- First generation of computing (1950-1959)
 - Used vacuum tubes to store data and programs
 - Each computer was multiple rooms in size
 - Computers were not very reliable
The Modern Era: 1950 to the Present (continued)

- Second generation of computing (1959-1965)
 - Replaced vacuum tubes by transistors and magnetic cores
 - Dramatic reduction in size
 - Computer could fit into a single room
 - Increase in reliability of computers
 - Reduced costs of computers
 - High-level programming languages
 - The programmer occupation was born
The Modern Era: 1950 to the Present (continued)

- Third generation of computing (1965-1975)
 - Used integrated circuits rather than individual electronic components
 - Further reduction in size and cost of computers
 - Computers became desk-sized
 - First minicomputer developed
 - Software industry formed
The Modern Era: 1950 to the Present (continued)

- Fourth generation of computing (1975-1985)
 - Reduced to the size of a typewriter
 - First microcomputer developed
 - Desktop and personal computers common
 - Appearance of
 - Computer networks
 - Electronic mail
 - User-friendly systems (Graphical user interfaces)
 - Embedded systems
Figure 1.7
The Altair 8800, the World’s First Microcomputer
The Modern Era: 1950 to the Present (continued)

- Fifth generation of computing (1985-?)
 - Recent developments
 - Massively parallel processors
 - Handheld devices and other types of personal digital assistants (PDAs)
 - High-resolution graphics
 - Powerful multimedia user interfaces incorporating sound, voice recognition, touch, photography, video, and television
The Modern Era: 1950 to the Present (continued)

- Recent developments (continued)
 - Integrated global telecommunications incorporating data, television, telephone, FAX, the Internet, and the World Wide Web
 - Wireless data communications
 - Massive storage devices
 - Ubiquitous computing
<table>
<thead>
<tr>
<th>Generation</th>
<th>Approximate Dates</th>
<th>Major Advances</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>1950–1957</td>
<td>First commercial computers
First symbolic programming languages
Use of binary arithmetic, vacuum tubes for storage
Punched card input/output</td>
</tr>
<tr>
<td>Second</td>
<td>1957–1965</td>
<td>Transistors and core memories
First disks for mass storage
Size reduction, increased reliability, lower costs
First high-level programming languages
First operating systems</td>
</tr>
<tr>
<td>Third</td>
<td>1965–1975</td>
<td>Integrated circuits
Further reduction in size and cost, increased reliability
First minicomputers
Time-shared operating systems
Appearance of the software industry
First set of computing standards for compatibility between systems</td>
</tr>
</tbody>
</table>

Figure 1.8
Some of the Major Advancements in Computing
| Fourth | 1975–1985 | Large-scale and very-large-scale integrated circuits
| | | Further reduction in size and cost, increased reliability
| | | First microcomputers
| | | Growth of new types of software and of the software industry
| | | Computer networks
| | | Graphical user interfaces
| Fifth | 1985–? | Ultra-large-scale integrated circuits
| | | Supercomputers and parallel processors
| | | Laptops and handheld computers
| | | Wireless computing
| | | Massive external data storage devices
| | | Ubiquitous computing
| | | High-resolution graphics, visualization, virtual reality
| | | Worldwide networks
| | | Multimedia user interfaces

Figure 1.8
Some of the Major Advancements in Computing
Organization of the Text

- This book is divided into six separate sections called levels

- Each level addresses one aspect of the definition of computer science

- Computer science/Algorithms
Organization of the Text

- **Level 1: The Algorithmic Foundations of Computer Science**
 - Chapters 1, 2, 3

- **Level 2: The Hardware World**
 - Chapters 4, 5

- **Level 3: The Virtual Machine**
 - Chapters 6, 7
Organization of the Text

- Level 4: The Software World
 - Chapters 8, 9, 10, 11
- Level 5: Applications
 - Chapters 12, 13, 14
- Level 6: Social Issues
 - Chapter 15
Figure 1.9
Organization of the Text into a Six-Layer Hierarchy
Summary

- Computer science is the study of algorithms.
- An algorithm is a well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time.
- If we can specify an algorithm to solve a problem, then we can automate its solution.
- Computers developed from mechanical calculating devices to modern electronic marvels of miniaturization.