Section 2.1: Limits Graphically

Definition. We say that the limit of \(f(x) \) as \(x \) approaches \(a \) is equal to \(L \), written
\[
\lim_{x \to a} f(x) = L,
\]
if we can make the values of \(f(x) \) as close to \(L \) as we like by taking \(x \) to be sufficiently close to \(a \), but not equal to \(a \). In other words, as \(x \) approaches \(a \) (but never equaling \(a \)), \(f(x) \) approaches \(L \).

Definition. We say that the limit of \(f(x) \) as \(x \) approaches \(a \) from the left is equal to \(L \), written
\[
\lim_{x \to a^-} f(x) = L,
\]
if we can make the values of \(f(x) \) as close to \(L \) as we like by taking \(x \) to be sufficiently close to \(a \), but strictly less than \(a \) (i.e., to the left of \(a \) as viewed on a number line). In other words, as \(x \) approaches \(a \) from the left (i.e., \(x < a \)), \(f(x) \) approaches \(L \).

Definition. We say that the limit of \(f(x) \) as \(x \) approaches \(a \) from the right is equal to \(L \), written
\[
\lim_{x \to a^+} f(x) = L,
\]
if we can make the values of \(f(x) \) as close to \(L \) as we like by taking \(x \) to be sufficiently close to \(a \), but strictly greater than \(a \) (i.e., to the right of \(a \) as viewed on a number line). In other words, as \(x \) approaches \(a \) from the right (i.e., \(a < x \)), \(f(x) \) approaches \(L \).

Definition. Limits taken from the left or the right are called one-sided limits.

Result. If both one-sided limits equal \(L \), then the two-sided limit must also equal \(L \). Conversely, if the two-sided limit equals \(L \), then both one-sided limits must also equal \(L \). That is,
\[
\lim_{x \to a^-} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^+} f(x) = L \quad \text{and} \quad \lim_{x \to a} f(x) = L.
\]

Definition. The function \(f \) is continuous at \(x = a \) provided \(f(a) \) is defined, \(\lim_{x \to a} f(x) \) exists, and
\[
\lim_{x \to a} f(x) = f(a).
\]
In other words, the value of the limit equals the value of the function. Graphically, the function \(f \) is continuous at \(x = a \) provided the graph of \(y = f(x) \) does not have any holes, jumps, or breaks at \(x = a \). (That is, the function is connected at \(x = a \).)

If \(f \) is not continuous at \(x = a \), then we say \(f \) is discontinuous at \(x = a \) (or \(f \) has a discontinuity at \(x = a \)).
Example 1. For the function f graphed below, find the following:

1. $\lim_{x \to -3^-} f(x) = $
2. $\lim_{x \to -3^+} f(x) = $
3. $\lim_{x \to -3} f(x) = $
4. $f(-3) = $
5. $\lim_{x \to -1^-} f(x) = $
6. $\lim_{x \to -1^+} f(x) = $
7. $\lim_{x \to -1} f(x) = $
8. $f(-1) = $
9. $\lim_{x \to 2^-} f(x) = $
10. $\lim_{x \to 2^+} f(x) = $
11. $\lim_{x \to 2} f(x) = $
12. $f(2) = $
13. $\lim_{x \to 4^-} f(x) = $
14. $\lim_{x \to 4^+} f(x) = $
15. $\lim_{x \to 4} f(x) = $
16. $f(4) = $
17. $\lim_{x \to 6^-} f(x) = $
18. $\lim_{x \to 6^+} f(x) = $
19. $\lim_{x \to 6} f(x) = $
20. $f(6) = $
21. List the value(s) of x at which f is discontinuous.

Note that the function is continuous at $x = 4$ and hence

$$\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = \lim_{x \to 4} f(x) = f(4) = -1.$$
EXERCISES

For the function f graphed below, find the following:

1. \(\lim_{x \to -5^-} f(x) = \)
2. \(\lim_{x \to -5^+} f(x) = \)
3. \(\lim_{x \to 5} f(x) = \)
4. \(f(-5) = \)
5. \(\lim_{x \to -2^-} f(x) = \)
6. \(\lim_{x \to -2^+} f(x) = \)
7. \(\lim_{x \to 2} f(x) = \)
8. \(f(-2) = \)
9. \(\lim_{x \to 0^-} f(x) = \)
10. \(\lim_{x \to 0^+} f(x) = \)
11. \(\lim_{x \to 0} f(x) = \)
12. \(f(0) = \)
13. \(\lim_{x \to 1^-} f(x) = \)
14. \(\lim_{x \to 1^+} f(x) = \)
15. \(\lim_{x \to 1} f(x) = \)
16. \(f(1) = \)
17. \(\lim_{x \to 3^-} f(x) = \)
18. \(\lim_{x \to 3^+} f(x) = \)
19. \(\lim_{x \to 3} f(x) = \)
20. \(f(3) = \)
21. \(\lim_{x \to 4^-} f(x) = \)
22. \(\lim_{x \to 4^+} f(x) = \)
23. \(\lim_{x \to 4} f(x) = \)
24. \(f(4) = \)
25. \(\lim_{x \to 5^-} f(x) = \)
26. \(\lim_{x \to 5^+} f(x) = \)
27. \(\lim_{x \to 5} f(x) = \)
28. \(f(5) = \)
29. List the value(s) of x at which f is discontinuous.
ANSWERS

1. 2
2. 2
3. 2
4. 1
5. −1
6. 4
7. Does not exist
8. 2
9. 6
10. 6
11. 6
12. 6
13. 7
14. 4
15. Does not exist
16. 7
17. 2
18. 2
19. 2
20. Undefined
21. 1
22. −4
23. Does not exist
24. 1
25. −3
26. 1
27. Does not exist
28. 1
29. $x = -5, -2, 1, 3, 4, 5$