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We now come to a very powerful concept in relativity, namely that of 4-vectors.
Although it is possible to derive everything in special relativity without the use of
4-vectors (and indeed, this is the route, give or take, that we took in the previous
two chapters), they are extremely helpful in making calculations and concepts much
simpler and more transparent.

I have chosen to postpone the introduction to 4-vectors until now, in order to
make it clear that everything in special relativity can be derived without them.
In encountering relativity for the first time, it’s nice to know that no “advanced”
techniques are required. But now that you’ve seen everything once, let’s go back
and derive various things in an easier way.

This situation, where 4-vectors are helpful but not necessary, is more pronounced
in general relativity, where the concept of tensors (the generalization of 4-vectors) is,
for all practical purposes, completely necessary for an understanding of the subject.
We won’t have time to go very deeply into GR in Chapter 13, so you’ll have to just
accept this fact. But suffice it to say that an eventual understanding of GR requires
a firm understanding of special-relativity 4-vectors.

12.1 Definition of 4-vectors

Definition 12.1 The 4-tuplet, A = (A0, A1, A2, A3), is a “4-vector” if the Ai trans-
form under a Lorentz transformation in the same way that (c dt, dx, dy, dz) do. In
other words, they must transform like (assuming the LT is along the x-direction; see
Fig. 12.1):

x x'

S S'

v

Figure 12.1A0 = γ(A′0 + (v/c)A′1),
A1 = γ(A′1 + (v/c)A′0),
A2 = A′2,
A3 = A′3. (12.1)

Remarks:

1. Similar equations must hold, of course, for Lorentz transformations in the y- and
z-directions.

XII-1
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2. Additionally, the last three components must be a vector in 3-space. That is, they
must transform like a usual vector under rotations in 3-space.

3. We’ll use a capital Roman letter to denote a 4-vector. A bold-face letter will denote,
as usual, a vector in 3-space.

4. Lest we get tired of writing the c’s over and over, we will henceforth work in units
where c = 1.

5. The first component of a 4-vector is called the “time” component. The other three
are the “space” components.

6. The components in (dt, dx, dy, dz) are sometimes referred to as (dx0, dx1, dx2, dx3).
Also, some treatments use the indices “1” through “4”, with “4” being the “time”
component. But we’ll use “0” through “3”.

7. The Ai may be functions of the dxi, the xi and their derivatives, any invariants (that
is, frame-independent quantities) such as the mass m, and v.

8. 4-vectors are the obvious generalization of vectors in regular space. A vector in 3-
dimensions, after all, is something that transforms under a rotation just like (dx, dy, dz)
does. We have simply generalized a 3-D rotation to a 4-D Lorentz transformation. ♣

12.2 Examples of 4-vectors

So far, we have only one 4-vector at our disposal, namely (dt, dx, dy, dz). What are
some others? Well, (7dt, 7dx, 7dy, 7dz) certainly works, as does any other constant
multiple of (dt, dx, dy, dz). Indeed, m(dt, dx, dy, dz) is a 4-vector, because m is an
invariant (independent of frame).

How about A = (dt, 2dx, dy, dz)? No, this isn’t a 4-vector, because on one hand
it must transform (assuming it’s a 4-vector) like

dt ≡ A0 = γ(A′0 + vA′1) ≡ γ
(
dt′ + v(2 dx′)

)
,

2 dx ≡ A1 = γ(A′1 + vA′0) ≡ γ
(
(2 dx′) + v dt′

)
,

dy ≡ A2 = A′2 ≡ dy′,
dz ≡ A3 = A′3 ≡ dz′, (12.2)

from the definition of a 4-vector. But on the other hand, it transforms like

dt = γ(dt′ + v dx′),
2 dx = 2γ(dx′ + v dt′),

dy = dy′,
dz = dz′, (12.3)

because this is how the dxi transform. The two preceding sets of equations are
inconsistent, so A = (dt, 2dx, dy, dz) is not a 4-vector. Note that if we had instead
considered the 4-tuplet, A = (dt, dx, 2dy, dz), then the two preceding equations
would have been consistent. But if we had then looked at how A transforms under
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a Lorentz transformation in the y-direction, we would have found that it is not a
4-vector.

The moral of this story is that the above definition of a 4-vector is a nontrivial one
because there are two possible ways that a 4-tuplet can transform. It can transform
according to the 4-vector definition, as in eq. (12.2). Or, it can transform by simply
having each of the Ai transform separately (knowing how the dxi transform), as in
eq. (12.3). Only for certain special 4-tuplets do these two methods give the same
result. By definition, we label these special 4-tuplets as 4-vectors.

Let us now construct some less trivial examples of 4-vectors. In constructing
these, we will make abundant use of the fact that the proper-time interval, dτ ≡√

dt2 − dr2, is an invariant.

• Velocity 4-vector: We can divide (dt, dx, dy, dz) by dτ , where dτ is the
proper time between two events (the same two events that yielded the dt,
etc.). The result is indeed a 4-vector, because dτ is independent of the frame
in which it is measured. Using dτ = dt/γ, we obtain

V ≡ 1
dτ

(dt, dx, dy, dz) = γ

(
1,

dx

dt
,
dy

dt
,
dz

dt

)
= (γ, γv) (12.4)

is a 4-vector. This is known as the velocity 4-vector. In the rest frame of the
object we have v = 0, so V reduces to V = (1, 0, 0, 0). With the c’s, we have
V = (γc, γv).

• Energy-momentum 4-vector: If we multiply the velocity 4-vector by the
invariant m, we obtain another 4-vector,

P ≡ mV = (γm, γmv) = (E,p), (12.5)

which is known as the energy-momentum 4-vector (or the 4-momentum for
short), for obvious reasons. In the rest frame of the object, P reduces to
P = (m, 0, 0, 0). With the c’s, we have P = (γmc, γmv) = (E/c,p). Some
treatments multiply through by c, so that the 4-momentum is (E,pc).

• Acceleration 4-vector: We can also take the derivative of the velocity 4-
vector with respect to τ . The result is indeed a 4-vector, because taking the
derivative simply entails taking the difference between two 4-vectors (which
results in a 4-vector because eq. (12.1) is linear), and then dividing by the
invariant dτ (which again results in a 4-vector). Using dτ = dt/γ, we obtain

A ≡ dV

dτ
=

d

dτ
(γ, γv) = γ

(
dγ

dt
,
d(γv)

dt

)
. (12.6)

Using dγ/dt = vv̇/(1− v2)3/2 = γ3vv̇, we have

A = (γ4vv̇ , γ4vv̇v + γ2a), (12.7)

where a ≡ dv/dt. A is known as the acceleration 4-vector. In the rest frame
of the object (or, rather, in the instantaneous inertial frame), A reduces to
A = (0,a).
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As we always do, we will pick the relative velocity, v, to point in the x-
direction. That is, v = (vx, 0, 0). This means that v = vx, and also that
v̇ = v̇x ≡ ax.1 Eq. (12.7) then becomes

A = (γ4vxax , γ4v2
xax + γ2ax , γ2ay , γ2az)

= (γ4vxax , γ4ax , γ2ay , γ2az). (12.8)

We can keep taking derivatives with respect to τ to create other 4-vectors, but
these have little relevance in the real world.

• Force 4-vector: We define the force 4-vector as

F ≡ dP

dτ
= γ

(
dE

dt
,
dp
dt

)
= γ

(
dE

dt
, f

)
, (12.9)

where f ≡ d(γmv)/dt is the usual 3-force. We’ll use f instead of F in this
chapter, to avoid confusion with the 4-force, F .

In the case where m is constant,2 F can be written as F = d(mV )/dτ =
m dV/dτ = mA. We therefore still have a nice “F equals mA” law of physics,
but it’s now a 4-vector equation instead of the old 3-vector one. In terms of
the acceleration 4-vector, we may use eq. (12.7) to write (if m is constant)

F = mA = (γ4mvv̇ , γ4mvv̇v + γ2ma). (12.10)

In the rest frame of the object (or, rather, the instantaneous inertial frame), F
reduces to F = (0, f), because dE/dt = 0, as you can verify. Also, mA reduces
to mA = (0, ma). Therefore, F = mA reduces to the familiar f = ma.

12.3 Properties of 4-vectors

The appealing thing about 4-vectors is that they have many useful properties. Let’s
look at some of these.

• Linear combinations: If A and B are 4-vectors, then C ≡ aA + bB is also
a 4-vector. This is true because the transformations in eq. (12.1) are linear
(as we noted above when deriving the acceleration 4-vector). This linearity
implies that the transformation of, say, the time component is

C0 ≡ (aA + bB)0 = aA0 + bB0 = a(A′0 + vA′1) + b(B′
0 + vB′

1)
= (aA′0 + bB′

0) + v(aA′1 + bB′
1)

≡ C ′
0 + vC ′

1, (12.11)

which is the proper transformation for the time component of a 4-vector.
Likewise for the other components. This property holds, of course, just as it
does for linear combinations of vectors in 3-space.

1The acceleration vector, a, is free to point in any direction, but you can check that the 0’s in
v lead to v̇ = ax. See Exercise 1.

2The mass m would not be constant if the object were being heated, or if extra mass were being
added to it. We won’t concern ourselves with such cases here.



12.3. PROPERTIES OF 4-VECTORS XII-5

• Inner-product invariance: Consider two arbitrary 4-vectors, A and B.
Define their inner product to be

A ·B ≡ A0B0 −A1B1 −A2B2 −A3B3 ≡ A0B0 −A ·B. (12.12)

Then A · B is invariant. That is, it is independent of the frame in which it is
calculated. This can be shown by direct calculation, using the transformations
in eq. (12.1):

A ·B ≡ A0B0 −A1B1 −A2B2 −A3B3

=
(
γ(A′0 + vA′1)

)(
γ(B′

0 + vB′
1)

)
−

(
γ(A′1 + vA′0)

)(
γ(B′

1 + vB′
0)

)

−A′2B
′
2 −A′3B

′
3

= γ2
(
A′0B

′
0 + v(A′0B

′
1 + A′1B

′
0) + v2A′1B

′
1

)

−γ2
(
A′1B

′
1 + v(A′1B

′
0 + A′0B

′
1) + v2A′0B

′
0

)

−A′2B
′
2 −A′3B

′
3

= A′0B
′
0(γ

2 − γ2v2)−A′1B
′
1(γ

2 − γ2v2)−A′2B
′
2 −A′3B

′
3

= A′0B
′
0 −A′1B

′
1 −A′2B

′
2 −A′3B

′
3

≡ A′ ·B′. (12.13)

The importance of this result cannot be overstated. This invariance is anal-
ogous to the invariance of the inner product, A · B, for rotations in 3-space.
The above inner product is also invariant under rotations in 3-space, because
it involves the combination A ·B.

The minus signs in the inner product may seem a little strange. But the goal
was to find a combination of two arbitrary vectors that is invariant under a
Lorentz transformation (because such combinations are very useful in seeing
what is going on in a problem). The nature of the LT’s demands that there
be opposite signs in the inner product, so that’s the way it is.

• Norm: As a corollary to the invariance of the inner product, we can look at
the inner product of a 4-vector with itself, which is by definition the square of
the norm. We see that

A2 ≡ A ·A ≡ A0A0 −A1A1 −A2A2 −A3A3 = A2
0 − |A|2 (12.14)

is invariant. This is analogous to the invariance of the norm
√

A ·A for
rotations in 3-space. Special cases of the invariance of the 4-vector norm are
the invariance of c2t2 − x2 in eq. (10.37), and the invariance of E2 − p2 in eq.
(11.20).

• A theorem: Here’s a nice little theorem:

If a certain one of the components of a 4-vector is 0 in every frame, then all
four components are 0 in every frame.
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Proof: If one of the space components (say, A1) is 0 in every frame, then the
other space components must also be 0 in every frame, because otherwise a
rotation would make A1 6= 0. Also, the time component A0 must be 0 in every
frame, because otherwise a Lorentz transformation in the x-direction would
make A1 6= 0.

If the time component, A0, is 0 in every frame, then the space components
must also be 0 in every frame, because otherwise a Lorentz transformation in
the appropriate direction would make A0 6= 0.

If someone comes along and says that she has a vector in 3-space that has no
x-component, no matter how you rotate the axes, then you would certainly say
that the vector must obviously be the zero vector. The situation in Lorentzian
4-space is basically the same, because all the coordinates get intertwined with
each other in the Lorentz (and rotation) transformations.

12.4 Energy, momentum

12.4.1 Norm

Many useful things arise from the simple fact that the P in eq. (12.5) is a 4-vector.
The invariance of the norm implies that P · P = E2 − |p|2 is invariant. If we are
dealing with only one particle, we can determine the value of P 2 by conveniently
working in the rest frame of the particle (so that v = 0). We obtain

E2 − p2 = m2, (12.15)

or E2−p2c2 = m2c4, with the c’s. We already knew this, of course, from just writing
out E2 − p2 = γ2m2 − γ2m2v2 = m2.

For a collection of particles, knowledge of the norm is very useful. If a process
involves many particles, then we can say that for any subset of the particles,

(∑
E

)2 −
(∑

p
)2

is invariant, (12.16)

because this is simply the norm of the sum of the energy-momentum 4-vectors of
the chosen particles. The sum is again a 4-vector, due to the linearity of eqs. (12.1).

What is the value of the invariant in eq. (12.16)? The most concise description
(which is basically a tautology) is that it is the square of the energy in the CM
frame, that is, in the frame where

∑
p = 0. For one particle, this reduces to m2.

Note that the sums are taken before squaring in eq. (12.16). Squaring before
adding would simply give the sum of the squares of the masses.

12.4.2 Transformation of E,p

We already know how the energy and momentum transform (see Section 11.2), but
let’s derive the transformation again here in a very quick and easy manner. We
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know that (E, px, py, pz) is a 4-vector. So it must transform according to eq. (12.1).
Therefore (for an LT in the x-direction),

E = γ(E′ + vp′x),
px = γ(p′x + vE′),
py = p′y,
pz = p′z, (12.17)

in agreement with eq. (11.18). That’s all there is to it.

Remark: The fact that E and p are part of the same 4-vector provides an easy way
to see that if one of them is conserved (in every frame) in a collision, then the other is
also. Consider an interaction among a set of particles, and look at the 4-vector, ∆P ≡
Pafter − Pbefore. If E is conserved in every frame, then the time component of ∆P is 0 in
every frame. But then the theorem in the previous section says that all four components of
∆P are 0 in every frame. Therefore, p is conserved. Likewise for the case where one of the
pi is known to be conserved. ♣

12.5 Force and acceleration

Throughout this section, we will deal with objects with constant mass, which we
will call “particles”. The treatment here can be generalized to cases where the mass
changes (for example, the object is being heated, or extra mass is being dumped on
it), but we won’t concern ourselves with these.

12.5.1 Transformation of forces

Let’s first look at the force 4-vector in the instantaneous inertial frame of a given
particle (frame S′). Eq. (12.9) gives

F ′ = γ

(
dE′

dt
, f ′

)
= (0, f ′). (12.18)

The first component is zero because dE′/dt = d(m/
√

1− v′2 )/dt, and this carries a
factor of v′, which is zero in this frame. Equivalently, you can just use eq.(12.10),
with a speed of zero.

We can now write down two expressions for the 4-force, F , in another frame,
S. First, since F is a 4-vector, it transforms according to eq. (12.1). We therefore
have, using eq. (12.18),

F0 = γ(F ′
0 + vF ′

1) = γvf ′x,

F1 = γ(F ′
1 + vF ′

0) = γf ′x,

F2 = F ′
2 = f ′y,

F3 = F ′
3 = f ′z. (12.19)
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But second, from the definition in eq. (12.9), we also have

F0 = γ dE/dt,

F1 = γfx,

F2 = γfy,

F3 = γfz. (12.20)

Combining eqs. (12.19) and (12.20), we obtain

dE/dt = vf ′x,

fx = f ′x,

fy = f ′y/γ,

fz = f ′z/γ. (12.21)

We therefore recover the results of Section 11.5.3. The longitudinal force is the same
in both frames, but the transverse forces are larger by a factor of γ in the particle’s
frame. Hence, fy/fx decreases by a factor of γ when going from the particle’s frame
to the lab frame (see Fig. 12.2 and Fig. 12.3).

f '

f '

f '

x

y

S

(frame S' )

Figure 12.2

fx

fy
f

f '

f '

x

y

S

(frame S )

γ
=

=

__

Figure 12.3

As a bonus, the F0 component in eq. (12.21) tells us (after multiplying through
by dt) that dE = fx dx, which is the work-energy result. In other words, using
fx ≡ dpx/dt, we have just proved again the result, dE/dx = dp/dt, from Section
11.5.1.

As noted in Section 11.5.3, we can’t switch the S and S′ frames and write
f ′y = fy/γ. When talking about the forces on a particle, there is indeed one preferred
frame of reference, namely that of the particle. All frames are not equivalent here.
When forming all of our 4-vectors in Section 12.2, we explicitly used the dτ , dt, dx,
etc., from two events, and it was understood that these two events were located at
the particle.

12.5.2 Transformation of accelerations

The procedure here is similar to the above treatment of the force. Let’s first look
at the acceleration 4-vector in the instantaneous inertial frame of a given particle
(frame S′). Eq. (12.7) or eq. (12.8) gives

A′ = (0,a′), (12.22)

because v′ = 0 in S′.
We can now write down two expressions for the 4-acceleration, A, in another

frame, S. First, since A is a 4-vector, it transforms according to eq. (12.1). So we
have, using eq. (12.22),

A0 = γ(A′0 + vA′1) = γva′x,

A1 = γ(A′1 + vA′0) = γa′x,

A2 = A′2 = a′y,
A3 = A′3 = a′z. (12.23)
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But second, from the expression in eq. (12.8), we also have

A0 = γ4vax,

A1 = γ4ax,

A2 = γ2ay,

A3 = γ2az. (12.24)

Combining eqs. (12.23) and (12.24), we obtain

ax = a′x/γ3,

ax = a′x/γ3,

ay = a′y/γ2,

az = a′z/γ2. (12.25)

(The first two equations here are redundant.) We see that ay/ax increases by a
factor of γ3/γ2 = γ when going from the particle’s frame to the lab frame (see
Fig. 12.4 and Fig. 12.5). This is the opposite of the effect on fy/fx.3 This difference

a'

a'

a'

x

y

S

(frame S' )

Figure 12.4

ax

ay
a

a'

a'

x

y

S

(frame S )

γ
=

=

__

γ
__

2

3

Figure 12.5

makes it clear that an f = ma law wouldn’t make any sense. If it were true in one
frame, then it wouldn’t be true in another.

Note also that the increase in ay/ax in going to the lab frame is consistent with
length contraction, as the Bead-on-a-rod example in Section 11.5.3 showed.

Example (Acceleration for circular motion): A particle moves with constant
speed v along the circle x2 + y2 = r2, z = 0, in the lab frame. At the instant the
particle crosses the negative y-axis (see Fig. 12.6), find the 3-acceleration and 4-

x

y

v

Figure 12.6

acceleration in both the lab frame and the instantaneous rest frame of the particle
(with axes chosen parallel to the lab’s axes).

Solution: Let the lab frame be S, and let the particle’s instantaneous inertial frame
be S′ when it crosses the negative y-axis. Then S and S′ are related by a Lorentz
transformation in the x-direction.
The 3-acceleration in S is simply

a = (0, v2/r, 0). (12.26)

There’s nothing fancy going on here; the nonrelativistic proof of a = v2/r works just
fine again in the relativistic case. Eq. (12.7) or (12.8) then gives the 4-acceleration
in S as

A = (0, 0, γ2v2/r, 0). (12.27)

To find the acceleration vectors in S′, we will use the fact S′ and S are related by
a Lorentz transformation in the x-direction. Therefore, the A2 component of the
4-acceleration is unchanged. So the 4-acceleration in S′ is also

A′ = A = (0, 0, γ2v2/r, 0). (12.28)
3In a nutshell, this difference is due to the fact that γ changes with time. When talking about

accelerations, there are γ’s that we have to differentiate; see eq. (12.6). This isn’t the case with
forces, because the γ is absorbed into the definition of p ≡ γmv; see eq. (12.9). This is what leads
to the different powers of γ in eq. (12.24), in contrast with the identical powers in eq. (12.20).
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In the particle’s frame, a′ is simply the space part of A (using eq. (12.7) or (12.8),
with v = 0 and γ = 1). Therefore, the 3-acceleration in S′ is

a′ = (0, γ2v2/r, 0). (12.29)

Remark: We can also arrive at the two factors of γ in a′ by using a simple time-dilation
argument. We have

a′y =
d2y′

dτ2
=

d2y′

d(t/γ)2
= γ2 d2y

dt2
= γ2 v2

r
, (12.30)

where we have used the fact that transverse lengths are the same in the two frames. ♣

12.6 The form of physical laws

One of the postulates of special relativity is that all inertial frames are equivalent.
Therefore, if a physical law holds in one frame, then it must hold in all frames.
Otherwise, it would be possible to differentiate between frames. As noted in the
previous section, the statement “f = ma” cannot be a physical law. The two sides
of the equation transform differently when going from one frame to another, so the
statement cannot be true in all frames.

If a statement has any chance of being true in all frames, it must involve only
4-vectors. Consider a 4-vector equation (say, “A = B”) which is true in frame S.
Then if we apply to this equation a Lorentz transformation (call it M) from S to
another frame S′, we have

A = B,

=⇒ MA = MB,

=⇒ A′ = B′.
(12.31)

The law is therefore also true in frame S′.
Of course, there are many 4-vector equations that are simply not true (for ex-

ample, F = P , or 2P = 3P ). Only a small set of such equations (for example,
F = mA) correspond to the real world.

Physical laws may also take the form of scalar equations, such as P · P = m2.
A scalar is by definition a quantity that is frame-independent (as we have shown
the inner product to be). So if a scalar statement is true in one inertial frame,
then it is true in all inertial frames. Physical laws may also be higher-rank “tensor”
equations, such as arise in electromagnetism and general relativity. We won’t discuss
such things here, but suffice it to say that tensors may be thought of as things built
up from 4-vectors. Scalars and 4-vectors are special cases of tensors.

All of this is exactly analogous to the situation in 3-D space. In Newtonian
mechanics, f = ma is a possible law, because both sides are 3-vectors. But f =
m(2ax, ay, az) is not a possible law, because the right-hand side is not a 3-vector; it
depends on which axis you label as the x-axis. Another example is the statement
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that a given stick has a length of 2 meters. That’s fine, but if you say that the stick
has an x-component of 1.7 meters, then this cannot be true in all frames.

God said to his cosmos directors,
“I’ve added some stringent selectors.
One is the clause
That your physical laws
Shall be written in terms of 4-vectors.”
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12.7 Exercises

1. Acceleration at rest

Show that the derivative of v ≡
√

v2
x + v2

y + v2
z equals ax, independent of how

all the vi’s are changing, provided that vy = vz = 0 at the moment in question.

2. Linear acceleration *
A particle’s velocity and acceleration both point in the x-direction, with mag-
nitudes v and v̇, respectively (as measured in the lab frame). In the spirit
of the example in Section 12.5.2, find the 3-acceleration and 4-acceleration in
both the lab frame and the instantaneous rest frame of the particle. Verify
that 3-accelerations are related according to eq. (12.25).

3. Same speed *
Consider the setup in Problem 2. Given v, what should θ be so that the speed
of one particle, as viewed by the other, is also v? Do your answers make sense
for v ≈ 0 and v ≈ c?

4. Three particles **
Three particles head off with equal speeds v, at 120◦ with respect to each
other, as shown in Fig. 12.7. What is the inner product of any two of the

v

v
A

B

C

v

120
120

120

Figure 12.7

4-velocities in any frame? Use your result to find the angle θ (see Fig. 12.8)

θ

θ
A

B

C 

Figure 12.8

at which two particles travel in the frame of the third.

5. Doppler effect *
Consider a photon traveling in the x-direction. Ignoring the y and z com-
ponents, and setting c = 1, the 4-momentum is (p, p). In matrix notation,
what are the Lorentz transformations for the frames traveling to the left and
to the right at speed v? What is the new 4-momentum of the photon in these
new frames? Accepting the fact the a photon’s energy is proportional to its
frequency, verify that your results are consistent with the Doppler results in
Section 10.6.1.
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12.8 Problems

1. Velocity addition

In A’s frame, B moves to the right with speed u, and C moves to the left
with speed v. What is the speed of B with respect to C? In other words, use
4-vectors to derive the velocity-addition formula.

2. Relative speed *
In the lab frame, two particles move with speed v along the paths shown in
Fig. 12.9. The angle between the trajectories is 2θ. What is the speed of one

θ

θ

v

v

Figure 12.9

particle, as viewed by the other?

3. Another relative speed *
In the lab frame, two particles, A and B, move with speeds u and v along the
paths shown in Fig. 12.10. The angle between the trajectories is θ. What is

θ

u

v

A

B

Figure 12.10

the speed of one particle, as viewed by the other?

4. Acceleration for linear motion *
A spaceship starts at rest with respect to frame S and accelerates with con-
stant proper acceleration a. In Section 10.7, we showed that the speed of the
spaceship with respect to S is given by v(τ) = tanh(aτ), where τ is the space-
ship’s proper time (and c = 1). Let V be the spaceship’s 4-velocity, and let A
be its 4-acceleration. In terms of the proper time τ ,

(a) Find V and A in frame S, by explicitly using v(τ) = tanh(aτ).

(b) Write down V and A in the spaceship’s frame, S′.

(c) Verify that V and A transform like 4-vectors between the two frames.
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12.9 Solutions

1. Velocity addition
Let the desired speed of B with respect to C be w. See Fig. 12.11.

u vB C

wB C

A's frame

C's frame

Figure 12.11

In A’s frame, the 4-velocity of B is (γu, γuu), and the 4-velocity of C is (γv,−γvv).
We have suppressed the y and z components here.
In C’s frame, the 4-velocity of B is (γw, γww), and the 4-velocity of C is (1, 0).
The invariance of the inner product implies

(γu, γuu) · (γv,−γvv) = (γw, γww) · (1, 0)
=⇒ γuγv(1 + uv) = γw

=⇒ 1 + uv√
1− u2

√
1− v2

=
1√

1− w2
. (12.32)

Squaring and then solving for w gives

w =
u + v

1 + uv
. (12.33)

2. Relative speed
In the lab frame, the 4-velocities of the particles are (suppressing the z component)

(γv, γvv cos θ, γvv sin θ) and (γv, γvv cos θ,−γvv sin θ). (12.34)

Let w be the desired speed of one particle as viewed by the other. Then in the frame
of one particle, the 4-velocities are (suppressing two spatial components)

(γw, γww) and (1, 0), (12.35)

where we have rotated the axes so that the relative motion is along the x-axis in this
frame. Since the 4-vector inner product is invariant under Lorentz transformations
and rotations, we have (using cos 2θ = cos2 θ − sin2 θ)

(γv, γvv cos θ, γvv sin θ) · (γv, γvv cos θ,−γvv sin θ) = (γw, γww) · (1, 0)
=⇒ γ2

v(1− v2 cos 2θ) = γw. (12.36)

Using the definitions of the γ’s, squaring, and solving for w gives

w =

√
1− (1− v2)2

(1− v2 cos 2θ)2
=

√
2v2(1− cos 2θ)− v4 sin2 2θ

1− v2 cos 2θ
. (12.37)

If desired, this can be rewritten (using some double-angle formulas) in the form,

w =
2v sin θ

√
1− v2 cos2 θ

1− v2 cos 2θ
. (12.38)

Remark: If 2θ = 180◦, then w = 2v/(1 + v2), in agreement with the standard velocity-

addition formula. And if θ = 0◦, then w = 0, as should be the case. If θ is very small, then

you can show w ≈ 2v sin θ/
√

1− v2, which is simply the relative speed in the lab frame,

multiplied by the time dilation factor between the frames. (The particles’ clocks run slow,

and transverse distances don’t change, so the relative speed is larger in a particle’s frame.)

♣
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3. Another relative speed
In the lab frame, the 4-velocities of the particles are (suppressing the z component)

VA = (γu, γuu, 0) and VB = (γv, γvv cos θ,−γvv sin θ). (12.39)

Let w be the desired speed of one particle as viewed by the other. Then in the frame
of one particle, the 4-velocities are (suppressing two spatial components)

(γw, γww) and (1, 0), (12.40)

where we have rotated the axes so that the relative motion is along the x-axis in this
frame. Since the 4-vector inner product is invariant under Lorentz transformations
and rotations, we have

(γu, γuu, 0) · (γv, γvv cos θ,−γvv sin θ) = (γw, γww) · (1, 0)
=⇒ γuγv(1− uv cos θ) = γw. (12.41)

Using the definitions of the γ’s, squaring, and solving for w gives

w =

√
1− (1− u2)(1− v2)

(1− uv cos θ)2
=

√
u2 + v2 − 2uv cos θ − u2v2 sin2 θ

1− uv cos θ
. (12.42)

You can check various special cases of this result.

4. Acceleration for linear motion

(a) Using v(τ) = tanh(aτ), we have γ = 1/
√

1− v2 = cosh(aτ). Therefore,

V = (γ, γv) =
(
cosh(aτ), sinh(aτ)

)
, (12.43)

where we have suppressed the two transverse components of V . We then have

A =
dV

dτ
= a

(
sinh(aτ), cosh(aτ)

)
. (12.44)

(b) The spaceship is at rest in its instantaneous inertial frame, so

V ′ = (1, 0). (12.45)

In the rest frame, we also have

A′ = (0, a). (12.46)

Equivalently, these are obtained by setting τ = 0 in the results from part (a),
because the spaceship hasn’t started moving at τ = 0, as is always the case in
the instantaneous rest frame.

(c) The Lorentz transformation matrix from S′ to S is

M =
(

γ γv
γv γ

)
=

(
cosh(aτ) sinh(aτ)
sinh(aτ) cosh(aτ)

)
. (12.47)

We must check that
(

V0

V1

)
= M

(
V ′

0

V ′
1

)
and

(
A0

A1

)
= M

(
A′0
A′1

)
. (12.48)

These are easily seen to be true.
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