Microsoft Photo Story 3 for Windows

Description

Microsoft’s Photo Story 3 (PS-3) was originally developed in 2005 and falls into the broad category of digital storytelling applications (Fredrick’s, 2009). Through the features offered in this product users can import digital images, add text, voice narration, and visual effects to their images and ultimately export their work as a video file. Conceptually, the print media equivalent to an application such as PS-3 would be the creation of a scrapbook or memory book. In a traditional format, printed images are placed in a book and hand written text accompanies each image to explain or tell a story about the captured experience. Furthermore, in a print scrapbook or memory book, visually appealing effects can be added such as labels or stamps to add further interest, explanation, or visual appeal. PS-3 is the digital equivalent by allowing a story to be told about digital images with the inclusion of digitally recorded voice narration and visual effects. In the end, instead of having a print memory book, the user has a digital video of their story.

The product uses a “wizard” approach to guide the user through the process of creating their Photo Story. Each step of the process – importing images, adding text, narrating, and exporting are presented to the user in order and on a dedicated screen. Only when the “next” button is clicked is the next step presented and at any time the user may return to the previous step by clicking the “back” button.

One of the benefits of PS-3 is that it is freely available for download from Microsoft’s website (http://www.microsoft.com/windowsxp/using/digitalphotography/photostory/default.mspx). In order to install and use the software there are several system requirements (a full list is available here: http://www.microsoft.com/windowsxp/using/digitalphotography/photostory/sysreqs.mspx). First and foremost, the computer running PS-3 must be Windows XP and not Mac. This is an important consideration when considering the implementation of this product into a classroom setting. Also, PS-3 requires that Microsoft Windows Media Player 10 is also installed. Most Windows XP computers already have Media Player installed; however, it can often be out-of-date. Making sure Media Player 10 is available and able to be downloaded onto the desired computer(s) is an important step toward making implementation of PS-3 successful.
In Support of Learning

When discussing the connection of products such as PS-3 and learning it is important to detach from the brand or specific product and focus on the concept of digital storytelling and how this process supports learning. PS-3 is one of many products (iMovie, Movie Maker, Animoto) that are readily available to educators for the purpose of telling digital stories.

But the question remains, how does digital storytelling support learning? First, the creative and procedural process required of students to compile images, sequence them, add text, and narrate fulfills multiple standards in the areas of technology, English language arts, and media literacy. Fredricks (2009) summarizes some of these connections in her article in School Library Monthly, entitled Tell me a Story. Fredricks states that digital storytelling meets the International Society for Technology in Education (ISTE) standards which state that students should be able to “…communicate information and ideas effectively to multiple audiences using a variety of media formats.” The author goes on to state that creating digital stories also meets the NCTE/IRA English language arts standards which states, “Students adjust their use of spoken, written, and visual language (e.g. conventions, style, vocabulary) to communicate effectively with a variety of audiences and for different purposes.”

Secondly, digital storytelling supports learning by building 21st century skills. Specifically, Czarnecki (2009) mentions that using the tools required to create a digital story, both hardware and software, are valuable for students who will be expected to be technologically savvy when they enter the 21st century workforce. In order to create a finished product with PS-3 students will need to have digital photos. The gathering of these photos exposes them to the use of digital cameras and several sub skills such as shot selection, connecting a camera to a computer, importing pictures, and organizing digital files. Also, the PS-3 software itself exposes students to a variety of software application skills such as saving and screen navigation.

Czarnecki goes on to state that “…digital storytelling programs are usually collaborative programs. By working in groups,…participants in digital storytelling build organizational skills.” This collaborative approach provided by the use of PS-3 further solidifies its positive impact on learning and the building of important 21st century skills.

Learning Theories

The Constructivist perspective on teaching and learning states that learning is not a passive transfer of information from teacher to learner but, to the contrary, a process where the learner is actively engaged in problem solving, discovery, and the formation of their own knowledge. Smaldino, Lowther, and Russell (2008) assert that, teachers should not be
dispensing facts and requiring students to regurgitate them at a later time. The process should involve authentic tasks that allow students to learn by doing. The use of digital storytelling, and specifically PS-3, allow teachers to create a classroom situation that adheres to the constructivist perspective. By allowing students to explore a topic, gather images, and compile a Photo Story teachers can create opportunities for students to assemble their own knowledge and present it in a way that is meaningful to them. Rather than simply memorizing facts about nature students can be immersed in nature as photographers and use PS-3 to compile their work into a unique and meaningful finished product that can be shared with a large audience.

Digging deeper into Constructivism and looking specifically at Inquiry-Based learning reveals further support for the use of digital storytelling and PS-3. This theory is based on the assumption that children have a natural desire to explore their environments and this exploration leads to learning. Inquiry-based learning, as stated by Wang, Kinzie, McGuire, and Pan (2009), “...involves a problem-solving process during which students answer research questions, construct their own knowledge, and develop their understandings with support of the teacher and peers.” The application of digital storytelling in the classroom compliments this definition. First, students are given a problem which becomes the focus of their digital story. Next, students perform research including the capturing of digital images and supporting information. Next, students construct their own knowledge by compiling their research (images and supporting information, into a digital story using a product such as PS-3. Finally, students develop their understanding with their teacher and peers by presenting their digital story and engaging in meaningful discussions and peer reviews.

The use of digital storytelling products such as PS-3 is related to both the Constructivist and Inquiry-based learning theories. By having students become actively involved in their learning and allowing them to employ technology tools they become more engaged in and motivated by the learning process.

Supporting Research

In the article “Digital story telling in a science classroom: reflective self-learning (RSL) in action” researchers Valkanova and Watts (2007) studied the impact of digital storytelling on oral language development in seven-year-old children. Specifically the study focuses on how student-created video diaries about everyday classroom experiences can help develop oral skills and RSL. According to this article, reflection has been shown in a number of studies, to help students’ abilities to move out of knowledge-telling and into knowledge.

This study centered on the topic of science and the children’s development of language and in particular the language of science. Students were instructed on how to use the software and hardware necessary to create the diaries and topics included words and phrases relating to light
and shadow formation. In the end, students presented their digital story to their classmates. Following the conclusion of the project students were given the opportunity to reflect on the experience in the form of a spoken self-narrative about the learning.

The researchers note that “Through these short productions, children produce self-reflective statements, represent ideas thoughtfully, evaluate their ideas, appreciate the state of their own knowledge, maintain social contact and interaction regulate their own actions and evaluate emotions.” This study showed that creating the video stories and self-reflection “made a measurable difference in the ‘video-makers’ knowledge and understanding of technical terms and expressions within primary school science.” The 30 children in the “treatment group” outperformed their parallel school-mates on school administered assessments. The students who utilized digital storytelling “…understood a greater and wider range of terms and expressions related to light and shadows. They were … also able to recognize more of the words associated with the topic that were deemed to be difficult.”

In a second study, performed for the Egyptian Ministry of Education (MoE), researchers set out to determine if digital storytelling, using Photo Story, could improve the level at which classroom technology was being integrated by teachers. Sadik (2009) states that the MoE had invested a large amount of money in equipping its schools with technology; however, even after this large investment, there was still a substantial gap between the amount of available technology and the level at which the technology was being used by teachers and students. The MoE was motivated to study whether or not digital storytelling could lead to meaningful technology integration.

The research was guided by three questions:

1. To what extent can students be engaged in authentic learning tasks with digital storytelling?

2. How effective is a digital storytelling approach in supporting teachers to effectively integrate technology into learning?

3. What are the teachers’ concerns and views regarding the implementation and integration of digital storytelling into learning?

Researchers selected teachers and trained them on the use of items such as Photo Story and digital cameras. The teachers then had students work in small groups to create Photo Story projects. The students had three days to complete their projects and then were required to present their completed work to the class.
In order to answer the three research questions, student projects and teacher reactions to the process were assessed using three separate instruments – a rubric for the completed student works, an observation checklist for gauging level of technology integration, and an interview with the participating teachers to evaluate the effectiveness of digital storytelling.

The implementation of digital storytelling in this study was not without some negative aspects. Specifically the teachers mentioned that the amount of available time was a major concern. However, with regard to the evaluation of the student projects, the study showed that “... overall, students did well in their projects and their stories met many of the pedagogical and technical attributes of digital stories.” Sadik (2009) goes on to say that “across all observations, it was clear that Photo Story has made it easy for students to become involved and active participants in their own learning process.” There was also a noticeable increased level of motivation and engagement on the part of the students in the development of their stories which increased both their subject matter and information and communication technology skills. The study concludes that, although not completely free of some drawback, the use of digital storytelling was enjoyed by students and provided an opportunity to be active participants in their learning and hone their problem solving skills.

Why PS-3 Appropriate for the Classroom?

Personally, I feel PS-3 is appropriate for the classroom for several reasons. First, it does not carry with it a large barrier to entry in the form of cost or learning curve. As stated previously PS-3 is a free download from Microsoft. Also, because of its simple interface and not being overly feature-rich, it does not take an inordinate amount of time to learn how to use the software. These are critical features that can assist already time-strapped and often techno-weary teachers. Furthermore, the simplicity allows students to focus on the content and the synthesis of their information rather than being distracted by myriad of unnecessary “bells and whistles.”

Beyond its ease of use and zero cost PS-3 engages students. I have used the product in classrooms and have witnessed this first hand. I believe this increased interest on the part of students is related to the fact that PS-3 and, digital storytelling in general, requires students to be actively involved in a variety of tasks. Rather than simply writing a research paper using a word processor, digital storytelling allows students to use cameras, computers, microphones, and their own creativity. This mix of tools and modalities makes for a much more interesting, dynamic and engaging learning experience. Also, their finished products can easily be shared with peers and their parents and open the door for deeper discussion and reflection.
References

