The Carbon Dioxide (CO2) Problem
The Problem
The carbon dioxide problem can be stated relatively simply:
- More than six and a half billion people burn
fuel to keep warm, to provide electricity to light their homes and
to run industry, and to move about using cars, buses, boats, trains,
and airplanes.
- The burning of fuel produces carbon dioxide, which is released to
the atmosphere.
- The burning of fuels adds about 6 gigatons of carbon to the atmosphere
each year.
- Carbon dioxide concentrations in the atmosphere have risen from about
270 parts per million (0.026%) before the industrial age to about 380
parts per million (0.038%) by 2006, a 41% increase over pre-industrial
values, and a 31% increase since 1870.
- Carbon dioxide is a greenhouse gas, and the increased concentration
of carbon dioxide in the atmosphere must influence earth's radiation
balance.
Measurements of Temperature and Carbon Dioxide
Measurements of carbon dioxide can be made
at any location on earth remote from nearby local sources because the
atmosphere is well mixed over periods of a few years. The two most
famous sets of measurements were made at Mauna Loa in Hawai'i and at
Vostok station in Antarctica.
- Charles Keeling began collecting flasks of air from an observatory
at the summit of Mauna Loa in Hawai'i in 1959. Keeling,
the first to confirm the rise of atmospheric carbon dioxide by very
precise measurements that produced a data set now known widely as the "Keeling
Curve." Prior to his investigations, it was unknown whether the
carbon dioxide released from the burning of fossil fuels and other
industrial activities would accumulate in the atmosphere instead of
being fully absorbed by the oceans and vegetated areas on land. From
Charles David Keeling: Climate Science Pioneer.
![Photo of Charles Keeling](Images/keeling.jpg)
![carbon dioxide concentration and temperature](Images/CO2-Temp.jpg)
Carbon dioxide concentration in the atmosphere measured by David
Keeling and colleagues at Mauna Loa, Hawai'i and from polar ice
cores, with average global surface temperature of earth.
Image from Woods
Hole Research Center, presentation by Director John P. Holdren, The
Scientific Evidence.
- The Vostok
ice core is a cylinder of ice collected by drilling from the surface
to near the bottom of the Antarctic ice sheet. Total length was 2083
meters, brought back in 4-6 meter sections. The core shows annual layers,
which can be used to date the air bubbles trapped in the ice. Analysis
of the gas content of the bubbles gives the concentration of carbon
dioxide in the atmosphere when the ice formed. Ratios of oxygen isotopes
and deuterium gives air temperature at the station at the time ice
was formed.
![](Images/vostoktempandco2.jpg)
Atmospheric carbon dioxide concentration calculated from air bubbles trapped
in the Antarctic continental glacier and cored at the Vostok ice Station. Notice
that present carbon dioxide concentrations far exceed all values for the past
400,000 years, and that the concentration is high when temperature is high. This
does not imply cause or effect. Both carbon dioxide and temperature are linked
through feedback loops. Both variables change over periods of around 100,000
years due to slow variations in earth's orbit and spin axis. To learn more about
the relation between carbon dioxide and temperature, we need other data and information.
Image from UNESCO Introduction
to Climate Change, GRID-Arendal.
- The page on Evidence for
Global Warming has more information
on ice cores and other sources of information.
Sources of Anthropogenic (Human-Produced) Carbon
Dioxide
Anthropogenic (human-produced) carbon dioxide is mostly
from the burning of fossil fuel: coal, oil, and natural gas. The burning
of forests to produce agricultural land, and the burning of forest wood
for heating and cooking add smaller amounts. The following information
comes mostly from the Statistical
Review of World Energy 2005 by British Petroleum. For updates see Statistical Review.
- Global energy use from fossil fuels was approximately 8,260 million
metric tons oil equivalent, which is approximately 9,623 X 109 m3 =
a cube of oil 2.12 km on a side.
- Global oil consumption in 2003 was 76,800,000 barrels of oil per
day. Most of the remainder of our energy comes from natural gas and
coal.
- Per capita consumption of energy in the United States is about
57 barrels of oil equivalent per year. The energy is used to heat and
light homes, offices, and stores, to power trucks and automobiles,
and to operate machinery. 57 barrels of oil at $50/barrel = $2,850.
If the energy were used entirely as electricity, it would cost about
$7,300 per person per year.
- Consumption of energy in the United States was approximately:
- 89.4% from burning fossil fuels.
- 39.1% oil
- 25.9% natural gas
- 24.4% coal
- 8.1% from nuclear energy
- 2.5%from hydroelectric power plants
- The United States used approximately 24% of all the world's energy,
although we are only 4.6% of the world's population.
Anthropogenic sources are a small part of the global
carbon system.
Their production mixes with carbon dioxide released by the respiration
of plants and animals, and through the decay of carbon-based material
from plants and animals.
Other Greenhouse Gases
Carbon dioxide is one of several greenhouse gases released in large
quantities by human activities. The important gases are:
- Water vapor. This is by far the most important greenhouse gas. It
evaporates mostly from the ocean, and it causes earth's surface
to be about 30°C
warmer (out of the 33°C of warming caused by all greenhouse
gases combined). See Ocean
and Climate for
a discussion of how much water warms the atmosphere.
- Carbon dioxide.
- Methane.
It is produced
by bacteria in wetlands and bogs, cattle, rice paddies, termites,
landfills, and coal mining. About two thirds
of the emissions into the atmosphere come from human activity, mostly
in the northern hemisphere. Methane concentration was 1783 parts
per billion in 2004, which was 155% larger than pre-industrial concentrations.
The rise in methane appears to have leveled off, and concentrations
have increased only 5 parts per billion since 1999. Methane does not
remain long in the atmosphere, about 8 years (Fischer et al, 2008),
so emissions and sinks are already close to balance. One pound of
methane is 22 time more effective in absorbing infrered radiation
than is a pound of carbon dioxide.
The Environmental Protection Agency has a web page listing the amounts
emitted by various sources.
![global distribution of methane](Images/globalmethane.jpg)
Average methane mixing ratios in the boundary
layer (the layer of the atmosphere in immediate contact with Earth's
surface) in 2003, calculated with a chemistry–transport model.
The atmospheric lifetime of methane is almost a decade, so it disperses
globally. Regions of strong emissions are nevertheless manifest, leading
to the largest variability in the northern hemisphere and an inter-hemispheric
difference of 5–10%.
The recently proposed release of methane by terrestrial vegetation
is not included, as its magnitude is still uncertain. Figure and text
are from Lelieveld (2006), who redrew the figure from Houweling
(1999).
- Nitrous oxide,
from microbes in the soil and the ocean, and from burning fossil fuels
at high temperatures, such as car engines. About one-third of the emissions
into the atmosphere come from human activity. N2O
concentrations were 319 parts per billion in 2004, which was 18% larger
than pre-industrial concentrations. Its lifetime in the atmosphere
is similar to that of carbon dioxide, about a century.
- Halocarbons such as refrigerants used in air conditioners .
- Tropospheric ozone, produced in smog.
Further Reading
For more information see Environmental Protection Agency's Global
Warming Site.
References
Houweling, S., T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann
(1999). Inverse modeling of methane sources and sinks using the
adjoint of a global transport model. Journal
of Geophysical Research 104 (D21): 26,137–26,160.
Fischer, H., M. Behrens, et al. (2008). Changing boreal methane
sources and constant biomass burning during the last termination. Nature 452
(7189): 864–867.
Lelieveld, J. (2006). Climate change: A nasty surprise in the
greenhouse. Nature 443 (7110): 405–406.
Revised on:
29 May, 2017
|