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Salicaceae detoxification abilities in Florida tiger swallowtail
butterflies (Papilio glaucus maynardi Gauthier): Novel ability
or Pleistocene holdover?
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Abstract Florida populations of the eastern tiger swallowtail butterfly, Papilio glaucus
L., have unique morphological features and ecological adaptations that have contributed to
their subspecies status (P. g. maynardi Gauthier). We describe geographically unique abili-
ties for detoxification of Carolina willow, Salix caroliniana Michx. (Salicaceae), for several
Florida populations of P. g. maynardi. Of all the approximately 570 worldwide species of
the Papilionidae, such Salicaceae detoxification abilities exist only in the allopatric North
American western and northernmost species (P. rutulus Lucas, P. eurymedon Lucas and
P. canadensis Rothschild & Jordan). Females of P. glaucus collected from populations in
southeastern USA were examined for oviposition preference in 5-choice assays, and dis-
played a low preference for Salicaceae (<5%), but larvae from Florida populations exhib-
ited a high survival (>60%) on these plants. Detoxification abilities have previously shown
to be autosomally inherited, and can be transferred via natural or hand-paired interspecific
hybrid introgression. However, these Florida populations are at least 700–1 500 km from
the nearest hybrids or the hybrid species, P. appalachiensis Pavulaan & Wright, which pos-
sess these detoxification abilities. In any case, the Z ( = X)-linked oviposition preferences
for Salicaceae are lacking in these Florida populations, illustrating genetic independence
of oviposition preference determination and larval survival/performance abilities. The ori-
gins of detoxification abilities are unlikely to be due to recent climate-driven introgression,
and may represent ancestral trait carry-overs from interglacial refugium populations of the
Pleistocene epoch.

Key words eastern tiger swallowtail, genetic introgression, interglacial island refugia,
Papilio glaucus maynardi, Papilionidae host plants, Salicaceae detoxification

Introduction

Nutritional and allelochemical differences among host
plants of herbivorous insects have been the subject of
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extensive research and theory during the past 6 decades,
especially in the swallowtail butterflies (Papilionidae)
(Ehrlich & Raven, 1964; Feeny, 1976; Scriber &
Slansky, 1981; Herms & Mattson, 1992; Scriber, 2002a,
2010; Berenbaum & Feeny, 2008). One of the most unique
families of plants, used by only two or three species
of the approximately 570 species of swallowtail butter-
flies, is the Salicaceae (willows, poplars and aspens).
Only Papilio rutulus Lucas, P. canadensis Rothschild &
Jordan, and to a lesser degree, P. eurymedon Lucas, can use
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Salicaceae as a host (Scriber, 1984, 1991; Dowell et al.,
1990; Ayres & Scriber, 1994); the phenolic glycosides
are toxic to other swallowtail species in the P. glaucus
group (Lindroth et al., 1986, 1988a), and larval survival
in the critical neonate stage (Zalucki et al., 2002) has
been essentially zero for all P. glaucus L. populations
tested (Scriber, 1988, 2002a, 2004). The detoxification
abilities of Salicaceae by P. rutulus and P. canadensis are
genetic (autosomal inheritance; Scriber, 1986b) and trans-
ferable interspecifically to P. glaucus via natural or artifi-
cial (hand-paired) hybridization and backcrosses (Scriber
et al., 1989, 1995, 1999).

Host use of Salicaceae plant species in the field requires
adult oviposition on such plants. Using interspecific hy-
brids with P. glaucus, the genetic basis of quaking aspen,
Populus tremuloides Michx., acceptance and use has been
shown to be sex-linked in P. canadensis, controlled by a
factor on the Z ( = X) chromosome (Scriber et al., 1991b;
Mercader & Scriber, 2007; Mercader et al., 2009). The
eastern tiger swallowtail, P. glaucus usually avoids Popu-
lus sp. for oviposition (including P. tremuloides, Scriber,
1993; Mercader & Scriber, 2008; and P. deltoides Bartram
ex. Marsh., Scriber, 2004). Preliminary oviposition assays
of the morphologically distinct Florida tiger swallowtail
populations (Lehnert et al., 2011) (putative P. glaucus
maynardi Gauthier; Maynard, 1891) subspecies showed
nearly total avoidance of Salicaceae (<5%) in 3- and
5-choice preference arrays that included Rosaceae, Mag-
noliaceae and Oleaceae plants (Bossart & Scriber, 1995).
However, these ecologically monophagous Florida popu-
lations have not been assayed for larval survival capabil-
ities on Salicaceae (Scriber, 1986a; Scriber et al., 1995).
We report the results of oviposition assays for P. glaucus
sampled from southeastern USA populations, and larval
survival assays for Florida populations on one of the most
common and widely distributed Salicaceae species, Car-
olina willow, Salix caroliniana Michx. (Nelson, 1994).
Other host plants commonly used by P. glaucus, includ-
ing the local favorite, sweetbay, Magnolia virginiana L.
(Magnoliaceae), were included for comparison.

Materials and methods

In order to evaluate the willingness to accept Salicaceae
for oviposition and larval survival abilities, wild females
of P. glaucus were allowed to oviposit in the laboratory by
placing individual females and different host plant leaves
(aqua-picked), inside clear plastic arenas (Fig. 1 shows a
3-choice array); the arenas were placed on rotating plat-
forms in front of a bank of 100 W incandescent lights
(see Scriber, 1993). The collecting locations are listed in
Table 1 (see also Fig. 2). Four-choice assays consisted

Fig. 1 Photograph of oviposition arena setup used to determine
oviposition preference of females of Papilio glaucus. In this
image, a female was placed inside the arena to demonstrate a
setup for a 3-choice assay (only 4- and 5-choice assays were
used in this study).

of sweetbay, M. virginiana (SB), black cherry, Prunus
serotina Ehrh (Rosaceae) (BC), green ash, Fraxinus
pennsylvanica Marshall (Oleaceae) (GA) and Carolina
willow, S. carolinana (W); 5-choice assays added tulip
tree, Liriodendron tulipifera L. (Magnoliaceae) (TT).
Carolina willow was selected because it is common and
widely distributed throughout most of Florida, perhaps
more so than any other Salicaceae species (Nelson, 1994).

Females were fed 20%–25% honey water solution daily.
The eggs were counted according to which plant they were
oviposited upon and collected daily. Eggs not oviposited
directly onto leaves (including plastic arena or filter pa-
per lining), but oviposited within 2 cm of a leaf were
counted; eggs laid further than 2 cm were not counted.
Eggs were placed into a Petri dish and left in a laboratory
room for larval emergence (18 : 6-h L : D photoperiod:
22–25◦C). Upon eclosion, neonate larvae were immedi-
ately transferred (using camel hair brushes) into plastic
rearing dishes (Rubbermaid TakeAlongs R©, Atlanta, GA,
USA) that contained an aqua-picked host plant. Distribu-
tion of these split broods was randomly made across the
five host plant treatments. Survival through completion
of the first larval instar and to pupation was recorded.

Additional data from similar assays conducted during
the previous 30 years were presented to illustrate the geo-
graphic pattern of Salicaceae and Magnoliaceae host plant
use differences between the P. glaucus and P. canaden-
sis butterfly populations and their hybrids. These studies
include larvae from populations of P. glaucus (168 fam-
ilies, 2 282 initial larvae set up; 23 counties sampled, 15
states), the hybrid zone (154, 2 180; 21 counties, 8 states),
and P. canadensis (232, 2 772; 41 counties, 4 states and
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Table 1 Oviposition preferences of individual females of Papilio glaucus from seven populations in southeastern USA (percentage of
total eggs in 5-choice bioassays; 2008).

Location GPS Coordinates n SB TT BC GA W Total eggs

Lake Placid, FL 27◦19′58′′N 4 36 a 40.4 b 5.1 16 2.5 ab 191
81◦18′55′′W

Sebring, FL 27◦28′0′′N 17 15.8 ab 57.7 ab 6.7 15.9 3.8 a 1622
81◦32′52′′W

Cedar Key, FL 29◦12′49′′N 6 21.1 ab 48.9 b 4.4 20.4 5.15 a 848
83◦ 2′12′′W

Waycross, GA 31◦ 5′51′′N 5 5.5 b 67.0 a 7.0 17.9 2.7 ab 420
82◦13′38′′W

Fairmount, GA 34◦56′5′′N 4 19.5 ab 53.3 ab 11.2 13.4 2.5 ab 477
85◦16′43′′W

Elkton, TN 35◦ 2′32′′N 4 6.0 b 55.7 ab 7.7 28.8 1.8 ab 514
86◦58′51′′W

Fayette, AL 33◦41′16′′N 3 11.1 ab 48.1 ab 8.9 31.9 0 b 103
87◦48′26′′W

Mean ± SE 16.3 ± 2.5 54.7 ± 2.4 6.9 ± 1.1 18.8 ± 2.3 3.2 ± 0.5
Totals 43 4 175

SB, sweetbay; TT, tulip tree; BC, black cherry; GA, green ash; W, Carolina willow.
Mean percentages in columns followed by the same letter are not significantly different (P = 0.05; each pair Student’s t-tests).
Data represents average percentage of eggs oviposited for each population, the transformed data used to determine significant differences
is not presented.

Manitoba) given quaking aspen, P. tremuloides (Sali-
caceae), in a split-brood regime to determine percent
survival. All populations tested also were fed tulip tree,
L. tulipifera (Magnoliaceae) (P. glaucus 176, 2 372; hy-
brid zone 162, 1 486; P. canadensis 232, 2 765). The
Florida populations of P. glaucus (15, 94; 5 counties, 1
state; Fig. 2) represent the putative P. g. maynardi sub-
species, and were given S. caroliniana (Salicaceae) and L.
tulipifera to compare larval survival. The data were arc-
sine transformed for normality and uploaded in JMP R©
9.0 (SAS Institute Inc., Cary, NC, USA) for analysis. An
each pairs Student’s t-test was applied to determine sig-
nificant differences (P = 0.05) in oviposition preferences
between populations sampled per host plant. The Tukey-
Kramer Honestly Significant Difference (HSD) test was
used to determine significant differences (P = 0.05) in
larval survival abilities between the tiger swallowtail but-
terfly genotypes (P. glaucus, P. canadensis, hybrids, and
P. g. maynardi) tested.

Results

The 43 females of P. glaucus from the southeastern USA
assayed for oviposition preferences in the 5-choice arrays
clearly avoided S. caroliniana (Table 1). A total of 4 175

Fig. 2 The geographic distribution of tiger swallowtail butter-
flies in eastern North America. Papilio glaucus, P. canaden-
sis, the center of the historical hybrid zone, (see Scriber et al.,
2008a; Scriber, 2011 for details), and the putative P. g. maynardi
(Scriber, 1986a) are shown with Florida populations used for
neonate survival assays indicated (1 = Wakulla, 2 = Perry, 3 =
Barberville, 4 = Cedar Key, 5 = Sebring, 6 = Lake Placid).
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Table 2 Larval survival on five Florida plant species (2008). The first, second and third columns under each host plant heading are
the total numbers of larvae set up on that host plant (A), the number that survived to second instar (B), and the number that pupated
(C), respectively.

SB TT BC W GA
Location GPS coordinates Family ID

A B C A B C A B C A B C A B C

Cedar Key, FL 29◦12′49′′N 8020 0 0 0 – – – 3 3 0 6 0 0 5 2 0
83◦2′12′′W 8308 25 24 17 29 27 23 9 9 9 1 1 0 – – –

8309 2 2 0 10 7 6 1 1 1 10 1 0 – – –
8313 34 23 9 4 3 1 4 4 4 6 3 1 11 8 1
8318 53 37 13 17 14 7 21 20 19 11 7 0 10 8 1
8324 9 8 2 20 17 12 7 7 4 3 3 0 4 4 0

Sebring, FL 27◦28′0′′N 8173 8 3 1 – – – 2 0 0 6 3 0 – – –
81◦32′52′′W 8341 13 12 6 36 34 21 10 10 10 5 3 0 – – –

8353 19 15 8 7 5 4 1 1 0 2 2 0 – – –
8355 4 4 2 23 17 13 11 5 4 2 2 0 – – –
8485 27 20 8 17 13 9 19 12 5 5 2 0 2 1 0

Barberville, FL 29◦11′36′′N 8063 81 74 28 – – – 72 52 10 18 10 7 33 6 0
81◦24′8′′W

Perry, FL 29◦58′24′′N 8114 9 4 3 – – – 11 1 1 6 3 0 5 0 0
83◦28′58′′W

Lake Placid, FL 27◦19′58′′N 8239 30 29 18 – – – 12 8 8 7 7 2 3 2 2
81◦18′55′′W

Wakulla, FL 30◦12′51′′N 8242 10 10 5 – – – 15 13 11 5 4 0 – – –
Totals 84◦11′46′′W 324 265 120 163 137 96 196 146 86 94 51 10 73 31 4
% Survival 83.3 36.5 80.2 54.5 75.9 51.6 63.9 5.6 53.4 10.7

SB, sweetbay; TT, tulip tree; BC, black cherry; GA, green ash; W, Carolina willow.

eggs were oviposited, but the mean percentage of eggs
placed on willow was less than 5%. In 4-choice assays,
the total number of eggs placed on S. caroliniana was less
than 10% of the 953 eggs oviposited by 15 females from
Florida (data not shown).

Neonate larval survival (total larvae from all families)
on these host plant species for Florida populations was
greatest for M. virginiana (SB = 83%), followed closely
by L. tulipifera (TT = 80%), and P. serotina (BC = 76%)
(Table 2). The overall neonate larval survival was low-
est on F. pennsylvanica (GA = 53%) and survival on
S. caroliniana was intermediate (CW = 64%); however,
the only significant difference in larval survival was be-
tween M. virginiana (high survival) and F. pennslyvanica
(low survival) (each pair Student’s t-test, P = 0.05). The
survival to the pupal stage was lower: 37% on SB, 55%
on TT, 52% on BC, 11% on GA and 6% on CW.

The various tested populations of P. canadensis and
P. glaucus genotypes from Canada to Florida show a ma-
jor reciprocal difference in their host plant use abilities
with very poor survival of P. glaucus on quaking aspen, P.
tremuloides (Salicaceae), and of P. canadensis on tulip tree

(Magnoliaceae) (Fig. 3). The populations within 100 km
of the historical hybrid zone showed considerable intro-
gression of host use abilities for both of these species.
Percent larval survival of Papilio canadensis on Magno-
liaceae was significantly different (lower) than the other
genotypes tested (Tukey-Kramer HSD, P ≤ 0.000 1); all
other populations of P. glaucus and hybrids were simi-
lar in ability to survive on Magnoliaceae (Fig. 3). Sig-
nificant differences were found between the P. glaucus,
P. canadensis and hybrid zone populations in ability to
survive on Salicaceae (Tukey-Kramer HSD, P ≤ 0.000 1).
The Florida 2008 populations were only significantly dif-
ferent from P. glaucus populations; they were similar in
Salicaceae detoxification abilities to P. canadensis and
hybrid zone populations (Fig. 3).

Discussion

Similar to previous studies, P. glaucus showed a low
oviposition preference for Salicaceae (Bossart & Scriber,
1995). Results from this study suggest that wild Florida
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Fig. 3 Neonate survival summaries for populations of Papilio
glaucus, P. canadensis, hybrid zone, and Florida 2008 genotypes
fed on Salicaceae and Magnoliaceae. The Florida 2008 geno-
type represents the putative P. g. maynardi subspecies. Survival
is expressed as the mean ± SE of all populations per genotype.
Significant differences between percent means were tested for
each plant family between each genotype (Tukey-Kramer HSD,
P ≤ 0.001), as indicated by different letters (capital letters, Sal-
icaceae; lowercase letters, Magnoliaceae). Data for P. glaucus,
P. canadensis, and hybrid zone genotypes combined from pre-
vious studies (Scriber, 1983; Scriber & Ording, 2005; Mercader
et al., 2009; Scriber, unpublished data).

populations of P. glaucus likely do not use, or rarely use,
S. caroliniana as a host plant when other host plants such
as sweetbay, tulip tree, black cherry and green ash are
available (Table 1). Sweetbay is the only host plant avail-
able to southern populations of P. g. maynardi (Scriber,
1986a; Bossart, 2003); although S. caroliniana is also
found in these southern regions, the lack of oviposition
on this plant likely maintains the ecological monophagous
status of these populations.

Although lower than observed on the favorite Magnoli-
aceae and Rosaceae host plants (see Scriber et al., 1991a;
Bossart, 2003), Florida populations of P. glaucus neonate
larval survival on S. caroliniana (Salicaceae) was unex-
pectedly high (64%, 15 families from 6 different Florida
populations), with some larvae surviving to pupation
(Table 2). Previous host use survival studies of P. glaucus
on various Salicaceae species (n = 7 species of Pop-
ulus and 4 species of Salix) resulted in essentially to-
tal mortality of neonate larvae; only on weeping wil-
low, S. babylonica L., did any neonates survive (> 9%),
while P. canadensis had high survival on all 12 Sali-
caceae species (Scriber, 1988; Ayres & Scriber, 1994).

Carolina willow was not assayed in these earlier stud-
ies, but the phytochemical toxins of this plant include
similar concentrations (Lindroth et al., 1988b; Soetens
et al., 1998) of the phenolic glycosides salicin, sal-
icortin and tremulacin (Prudic et al., 2007) found in other
Populus and Salix species (Palo, 1984; Julkunen-Tiito,
1989; Nyman & Julkunen-Tiito, 2005). These glycosides
have previously been shown to be either toxic (Lindroth
et al., 1986, 1988a), or serve as a repellent (larval refusal
to eat leaves; Scott, 1986; Scriber, 1988) to P. glaucus
larvae.

Phenolic (salicylic) glycosides and other phytochem-
icals may differ significantly among Salix species
(Ruuhola et al., 2001). However, local adaptations of
Salicaceae-specialized insect herbivores remain some-
what plastic and host shifts can occur to and from
species that exhibit high or low salicylic glycoside levels
(Weingartner et al., 2006; Zvereva et al., 2010). Gen-
eralist species (such as P. glaucus) have been negatively
impacted by such chemical variation in glucoside concen-
trations (Tahvanainen et al., 1985; Lindroth et al., 1988a;
Ruuhola et al., 2001).

The eastern tiger swallowtail butterfly is the most
polyphagous of all Papilionidae worldwide (Scriber, 1973,
1984) and has been shown to feed successfully on dozens
of species from more than 12 families (Scriber, 1986a,
1988). Historical records of Salicaceae use as a host plant
by P. glaucus exist (Gosse, 1840; Edwards, 1884, 1885a,
b, 1886; Scudder, 1889; Clark & Clark, 1951; McGugan,
1958; Tietz, 1972; Scott, 1986); however, most of these
references relate to weeping willow and may have been
the source of some subsequent literature citation duplica-
tion. In any case, most of these reports are likely in refer-
ence to P. canadensis (then believed to be a subspecies of
P. glaucus; see Scriber, 1988; Hagen et al., 1991) or hy-
brids in what today has been recognized as a hybrid zone
from the Great Lakes to New England (Scriber, 2010,
2011; Scriber et al., 2003, 2008a).

Salicaceae detoxification in Florida populations: An
ancestral ability or a novel trait?

Recent gene flow from the mountain refuges (possibly
supporting P. appalachiensis genotypes; Scriber & Or-
ding, 2005; Scriber et al., 2008a; Ording et al., 2010;
Scriber, 2011; Kunte et al., 2011) may explain some of
the recent abilities to use quaking aspen, P. tremuloides,
by females of P. glaucus near these regions. In the 1980s,
P. glaucus from this region had low (but hybrid-like) sur-
vival on P. tremuloides (38.7%, 12 families, 31 neonates),
but subsequent to the 1998 regional climate warming,
most females assayed from the southern Appalachian
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Mountains (Habersham & Rabun Counties, GA, near
southernmost P. appalachiensis types; see Fig. 2) showed
significant survival on this plant species (95.5%, 12 fam-
ilies, 44 neonates). In contrast, the Clark and Oglethorpe
Counties populations that are further south by only 100–
200 km showed essentially no introgression of abilities
to survive on Salicaceae (only 1.7% of 162 neonate
larvae from 19 families in 2002–2003 survived on
P. tremuloides).

However, the general movements of Salicaceae and
Magnoliaceae detoxification abilities in the historical
P. canadensis and P. glaucus hybrid zone have been
disproportionate since the recent warming, despite be-
ing autosomally controlled (Scriber, 1986b, 2011). Re-
cent introgression of Magnoliaceae detoxification abil-
ities northward into P. canadensis populations has not
been reciprocated by movement of Salicaceae detoxifi-
cation abilities southward (Scriber, 2002b, Scriber et al.,
2008a). Other local adaptations are doubtlessly involved
(Aardema et al., 2011; Scriber, 2011), but oviposition
preferences and detoxification abilities are critically im-
portant for any host shifts.

Other than in these northernmost historical hybrid zone
populations (and P. canadensis), the only tiger swallow-
tail populations in eastern North America with Salicaceae
detoxification abilities in neonate larvae greater than 10%
are Pendleton and Clay Counties in West Virginia, and
Habersham and Rabun Counties in Georgia (both of these
mountainous populations are near the recombinant hy-
brid species, P. appalachiensis; see Fig. 2 and Kunte
et al., 2011). It would seem that recent gene flow
from the southern Appalachian Mountains is an un-
likely explanation of Salicaceae detoxification abilities
in these Florida P. glaucus populations. The alternative
suggests that the Salicaceae detoxification abilities are
ancestral and were retained (possibly due to a lack of
antagonistic pleiotropy, or trade-offs) by these Florida
populations.

Florida populations of P. glaucus (P. g. maynardi sub-
species) may represent remnant refuge populations that in-
habited Florida during the Pliocene or interglacial (warm)
periods of the Pleistocene when much of the northern
Florida and southern Georgia region was below sea level,
leaving a chain of islands in central Florida (Ellsworth
et al., 1994; Lane, 1994; Soltis et al., 2006). The pop-
ulations of organisms on these islands were likely sep-
arated from mainland populations, and their subsequent
secondary contact upon the retreat of the seawater likely
contributed to the formation of the numerous hybrid zones
within the Northern-Florida Suture Zone (Remington,
1968). The isolated populations of P. glaucus that inhab-
ited the islands of Florida may have retained the Salicaceae

detoxification abilities while it was lost in northern main-
land populations.

Florida populations of P. glaucus have somehow re-
tained abilities to detoxify and process some Salicaceae
leaves for survival and growth, despite their strong
avoidance of these leaves for oviposition. Such indepen-
dence of oviposition preference and larval performance
in insects is not uncommon (but see Berenbaum & Feeny,
2008). However, in the Papilio glaucus group pleiotropic
traits conveying the ability to detoxify ancient plant fam-
ilies appear to persist (Scriber et al., 2008b; Scriber,
2011).

The eastern tiger swallowtail has retained the ability
to feed on the phylogenetically basal Rutaceae hosts as
well as some Australian host species that it has never
encountered (at least during the past millions of years;
Scriber et al., 2008b, 2008c). These abilities to feed on
new hosts without losing abilities to feed on ancestral
hosts may have something to do with the detoxifica-
tion abilities it possesses (cytochrome P-450 enzymes; Li
et al., 2002, 2003, 2004; Scriber, 2010). The likely
phytochemical mechanisms of why the Salicaceae are
nearly uniformly toxic to this species has been elucidated
(Lindroth et al., 1988a; Scriber et al., 1989, 1999; Fig. 3),
but the Florida populations assayed here seem to be an
exception; the survival through the neonate stage and also
to pupation was relatively high. We suggest that introgres-
sion enhanced by the recent climate-driven forces (Scriber
2011; Aardema et al. unpublished data) is less likely as
an explanation than is historical detoxification trait re-
tention (Putnam et al., 2007; Scriber, 2008b), potentially
in reproductively isolated Pleistocene interglacial Papilio
populations of Florida refugial islands (Lane, 1994), as in
southern Appalachian Mountain populations (Scriber &
Ording, 2005; Kunte et al., 2011).
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