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Abstract

Breast cancer is one of the most important medical problems. In this paper, we report the results
of using neural networks for breast cancer diagnosis. The theoretical advantage is that posterior
probabilities of malignancy can be estimated directly, and coupled with resampling techniques such
as the bootstrap, distributions of the probabilities can also be obtained. These allow a researcher
much more insight into the variability of estimated probabilities. Another contribution is that we
present an integrative approach to building neural network models. The issues of model selection,
feature selection, and function approximation are discussed with some detail and illustrated with
the application to breast cancer diagnosis.
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According to the American Cancer Society: �Excluding cancers of the skin, breast cancer is the

most common cancer among women, accounting for one out of every three cancer diagnoses in the

United States. In 1997, approximately 180,200 new cases of invasive breast cancer are expected to be

diagnosed, and 43,900 women are expected to die from this disease. Only lung cancer causes more

cancer deaths in women.�1

Early detection can greatly enhance the chances of long-term survival of breast cancer victims.

The recent decline in the breast cancer mortality rate is generally attributed to a greater awareness of

the disease and the increased use of mammography1. When mammography detects a tumor, biopsy is

required to determine its malignancy. Fine needle biopsy is much less invasive and less costly than a

full biopsy. The Wisconsin study group, led by W.H. Wolberg and O.L. Mangasarian, has developed

a computerized image analysis system and a linear programming-based classiÞcation scheme for the

diagnosis of Þne needle aspirates (FNA)2−5. The system has been in clinical trial since 1994 at the

University of Wisconsin Hospitals (Madison) and has resulted in no misdiagnosis in 176 successive

cases3.

In this paper, an alternative classiÞcation scheme based on feedforward neural networks is pre-

sented. Neural networks have been used for a wide variety of classiÞcation problems. Some examples

include prediction of bank bankruptcies6, donor choice for university fund raising7, and prediction of

diabetes8. See Zhang9 for a comprehensive survey of neural networks for classiÞcation.

One of the primary reason for using neural networks is that they can approximate the probability of

malignancy (called posterior probability in classiÞcation literature) directly. Coupled with resampling

schemes such as the bootstrap method10, the network models can produce not only point estimates but

also interval estimates (for example, see Hurrion11 ).

The theoretical justiÞcation for estimating the posterior probability directly from data is based

on two important results. The Þrst is that the least squares method is an unbiased estimator of a

population parameter (of which the posterior probability is one). The second is that neural networks

can approximate any function arbitrarily closely. By using a least squares objective function, neural

networks can thus produce unbiased estimates of the posterior probabilities.

As with any model building exercise, selection of an appropriate model is a very important and

nontrivial problem. For the feedforward neural network used here, model selection includes the

choice of network architecture (i.e., network topology, number of hidden layers and hidden nodes,

etc.) and feature selection (the set of input variables). In general, a model is chosen to balance

the trade-off between accuracy (goodness-of-Þt, for example) and generalizability (ability to predict

unseen cases). For neural networks in general, this trade-off is complicated by several factors. One

is that the variables are �nonparametric� in that no distributional properties can be assumed. Also,

the nonlinear functions in the network make analysis of the distributional properties of the output

variables difficult. Thirdly, the least squares objective function used in network training is nonconvex;

hence no globally optimal solution can be guaranteed. For a selected network architecture and a set

of features, the solution to the least squares problem may not be the best one for the data set. These
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difficulties pose special challenges to neural network modelers. In this paper, we present an approach

to deal with the issues in model selection.

The organization of the paper is as follows. In the following two sections, we brießy describe

the Wisconsin breast cancer diagnosis system and the posterior probability estimation for two-group

classiÞcation, to which breast cancer diagnosis belongs. The Wisconsin approach to estimate this

probability is also discussed, along with the theory of least squares estimator and interpretation of the

posterior probability. The basics of neural networks are then introduced in a new section, along with

an explanation of the training algorithm. Then we present the issues of building a neural network,

and introduce the theoretical formulation of the trade-off between accuracy and generalizability. The

main issues are architecture selection and feature selection. We propose the use of a hold-out data set,

called the validation set, to help in making these decisions. The bootstrap method is also described

here.

The section on model selection for the breast cancer data set shows that our feature selection

procedure results in a model of only 9 input variables, down from 30 variables in the data set. The

network architecture selected is one without hidden nodes. The performance of applying the 30 and

9 variable models on an unseen test set is then presented in the results section. The neural network

models achieve very high correct classiÞcation rates. With bootstrap, there are other interesting

possibilities. For each case in the data set, we can use the mean from the bootstrap resamples to

estimate its posterior probability. We can also construct a �conÞdence interval� from the empirical

distribution of the posterior probabilities. The latter is particularly useful for the accuracy assessment

of the estimates.

The Wisconsin system for breast cancer diagnosis

The image analysis system developed in the University of Wisconsin Hospitals (Madison) is called

Xcyt and it includes both hardware and software. First, a Þne needle aspirate (FNA) is taken from

a lump in a patient�s breast. The ßuid from the FNA is expressed onto a glass slide and stained to

highlight the nuclei of the cells. An area on the slide is selected for imaging. The image is generated

by a color video camera mounted atop a microscope and captured by a digitizer.

From the digitized image, an operator selects 10 to 20 nuclei and uses a mouse to trace a rough

outline of each. An active contour model called the snake12 is used to locate the actual boundary of

each nucleus. Figure 1 shows an example of how the boundaries are determined. The dotted lines are

drawn by the operator and the solid lines result from the active contour algorithm. (Figures 1 and 2

were downloaded from www.cs.wisc.edu/~street/images.html.)

(Insert Figure 1 about here)

Ten features are computed for each nucleus: area, radius, perimeter, symmetry, number and size of

concavities, fractal dimension of the boundary, compactness, smoothness, and texture. The mean, the
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extreme (usually the mean of the three largest values), and the standard error of each feature across

the nuclei are obtained, resulting in a total of 30 variables for each image.

The classiÞcation method used for the diagnosis of FNA samples is called the multisurface method-

tree (MSM-T)13 which iteratively places separating planes between benign and malignant subjects and

then assembles the separating functions into a decision tree. Let x be the vector of features and w be the

vector of coefficients. The separating plane is γ = xTw. In MSM, the coefficients w are determined via

a linear program which minimizes the average sum of violations resulting from incorrect classiÞcations.

The Wisconsin Breast Cancer Data set consists of 569 cases, of which 357 are diagnosed as benign

and the remaining 212 are known to be malignant. Model selection involves both the number of

separating planes and the number of feature variables. After an almost exhaustive search, a model

using one single plane and three features was found to have a 97.5% accuracy in diagnosis. The three

features are: extreme area, extreme smoothness, and mean texture3. The normal of the equation,

γ, is then used to construct a posterior probability distribution, which is explained in the following

section.

Posterior probability

Fundamentals

Statistical classiÞcation is concerned with the assignment of an object to one of several classes (groups)

based on the features of the object. For the application of interest here, there are two classes:

malignancy or benignity. Let Ω denote the state of malignance and Ω that of benignity. Let x denote

the features vector of an object. The probability for observing object x in the group of malignancy

is measured by the conditional density function f(x | Ω). Similarly, there is a conditional density

function f(x | Ω) for the benign group. Let p(Ω) be the prior probability of malignancy and p(Ω) = 1−
p(Ω) that of benignity. (We use f for the density function and p for the probability mass function.)

Using Bayes theorem, one can calculate the posterior probability of x being malignant:

p(Ω | x) = f(x ∩Ω)
f(x)

=
f(x | Ω)p(Ω)

f(x | Ω)p(Ω) + f(x | Ω)p(Ω) (1)

It is easy to see that the posterior probability is perhaps the most useful piece of information for

classifying an object. Unfortunately, it is in general a nonlinear function of x and can not be computed

directly. However, it can be estimated from data. There are two approaches: direct approximation

and indirect approximation. The Wisconsin approach can be classiÞed into the latter.

After constructing the separating plane γ, the Wisconsin approach uses the Parzen window for

density function estimation14 to estimate the probability of malignancy. The window is an interval on

the axis of γ and the technique essentially counts the number of malignant cases in each interval. A

probability distribution is obtained by dividing the frequency in each interval by the total frequency

(212, in this example). A similar probability distribution is computed for benign cases. These dis-

tributions are the conditional functions f(x | Ω) and f(x | Ω), respectively. Figure 2 shows these
4



two conditional functions. The X-axis is γ and the curve on the left is the distribution of benign

cases, f(x | Ω), whereas the curve on the right is the distribution of malignant cases, f(x | Ω). The
next step is to put these functions into equation (1),using the prior probabilities of p(Ω) = p(Ω) = 1

2

(Mangasarian, et al.3), to obtain the posterior probabilities. The cross (×) marks an illustrative case
whose posterior probability is estimated to be 1.00.

(Insert Figure 2 about here)

Least squares estimator

Suppose we wish to estimate a random variable y by a function g(x). (For our application, y is the

state variable of malignancy and g(x) is a function based on features x.) Let f(x, y) denote the joint

density function. It is well known in statistics15 that if g(x) minimizes the mean squares function

(where E stands for the expectation function)

E{[y − g(x)]2} =
Z Z

[y − g(x)]2f(x, y)dxdy

then

g(x) = E{y | x}

If y is an indicator variable � for example, y = 1 for malignance and y = 0 otherwise � then

E{y | x} = p(Ω | x), exactly the posterior probability of x being malignant.
So the theory implies that a function obtained from the least squares method is an unbiased

estimator of the posterior probability. There are many (indeed, inÞnite) choices for the form of

function g(x) which, for generality, should be a nonlinear function in x. ArtiÞcial neural networks

are nonlinear models. The advantage is that the model complexity is conveniently determined by the

network topology and the activation functions in the nodes.

Interpretation of the posterior probability

From statistics point of view, Ω | x is a Bernoulli random variable since Ω | x is equal to 1 if the patient
represented by x has malignant tumor and it is equal to 0 otherwise. As p(Ω | x) is the probability
measure of the variable, one can also say that

E(Ω | x) = p(Ω | x)
var(Ω | x) = p(Ω | x)(1− p(Ω | x))

Neural networks

Network components

The feedforward neural networks employed in this study all have one input layer, one hidden layer,

and one output layer. Each layer contains a number of nodes. The word �feedfoward� describes a
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network where there are no circuits (feedback loops). The arcs connect nodes from a lower layer

(with the input layer being at the bottom and the output layer at the top) to a higher layer. A kind

of feedforward network called perceptron has arcs connecting nodes of adjacent layers only. In our

topology, there are also arcs (sometimes called shortcut arcs) connecting input nodes to the output

nodes. An example is shown in Figure 3.

(Insert Figure 3 about here)

Each node gathers the signals coming through the arcs, adds a scalar (also called node bias), then

transfers the total input into an output. The transfer function is also called the activation function. In

our networks, the activation function in the hidden and the output nodes is the logistic function which

has the form a(x) = (1+e−x)−1. Theoretically, a network with one hidden layer and logistic activation

function at the hidden and output nodes is capable of approximating any function arbitrarily closely,

provided that the number of hidden nodes is large enough16.

We use the term parameters to refer to the arc weights and node scalars. The parameters are

determined by training the network with examples. For the breast cancer diagnosis problem, each

example includes the features vector x and the known status. To be speciÞc, for observation (patient)

i, let xi be the features vector and yi be the status variable with yi = 1 if the observation is malignant

and yi = 0 if it is not. Only one output node is required for such a two-group classiÞcation problem.

Let ai be the activation value of the output node for observation i, which is a nonlinear function of

xi and the network parameters. Training is to select the parameters such that ai is as close to yi as

possible. One measure of the goodness of Þt is the sum of squared errors (SSE):X
i

(ai − yi)2 (2)

Obviously we would like the SSE to be as small as possible; i.e., to minimize function (2). Thus, the

network is a least squares estimator and the output ai will be the posterior probability for patient i.

Training algorithm

Neural network training, with the objective function deÞned above, is a nonlinear minimization prob-

lem. Unfortunately, the function (2) is nonconvex, and therefore the global minimum can not be

guaranteed. For nonconvex minimization, a popular method is to use multiple starting solutions (to

initialize the network parameters) and to select the Þnal solution with the smallest objective value.

The algorithm used here was developed by Ahn17 and is called the forward additive algorithm. It uses

a strategy where the starting solution is determined by the data set. Initially, we solved the least

squares problem on a network with no hidden nodes and linear activation functions (i.e., a(x) = x)

at the output nodes. This network is exactly the same as a multiple linear regression model with

each regression coefficient equal to the weight of the associated arc or the scalar of the associated

output node. The next step is to change the activation function at the output nodes to logistic (or any

6



nonlinear function), using the linear model solution as the starting solution for this logistic regression

model. Minimization is achieved by a convergent algorithm called limited memory quasi-Newton de-

veloped by Nocedal18 and adapted for neural network training by Denton19. Then hidden nodes are

added one at a time � along with the arcs from the input nodes to the new hidden node and the arcs

from the hidden node to the output nodes � and each network is reoptimized. The solution of the

previous network is retained as the starting value for the same parameters in the new network and

new parameters are assigned starting values based on the distribution of the input features. (There

are four different methods in Ahn�s algorithm for assigning starting values of the new parameters. We

used only the most basic method. See Ahn17 for the details of all the methods.) One option of Ahn�s

algorithm is to stop computation when a predetermined number of hidden nodes is reached. This is

the version used in this research.

Building Neural Network Models

There are several important issues in building a model. There are those related to the model itself and

there are those related to the analysis of the output. The former include the selection of the hidden

nodes and input variables, whereas the latter include the reliability and interpretation of results.

Model selection

All the components of a neural network � number of hidden layers, number of hidden nodes, arc

connections, etc.� need to be determined before they can be used. Theoretically, model selection

should be based on the trade-off between model bias and model variance20. The bias of a model relates

to the predictive accuracy of the model, whereas variance refers to the variability of the predictions.

A model with low bias � by having many hidden nodes, for example � tends to have high variance.

On the other hand, a model with low variance, such as a linear regression model, tends to have high

bias. Stated differently, a model with low bias and high variance is likely a result of overÞtting the

data; whereas a model with high bias and low variance is likely a result of underÞtting the data. For

a more detailed discussion of model selection, please see Bishop21.

The goal of model selection is to Þnd one with reasonable levels of model bias and model variance.

To accomplish this, it is typical to divide the data set into three subsets: training, validation, and

test sets. For a given network architecture (here, it refers to the network with a speciÞc number of

hidden and input nodes) the training set is used to determine the network parameters. The resultant

network is then used to predict the outcome of the validation set. The architecture with the smallest

SSE (of the validation set) is then chosen. The test set is used to evaluate the performance (called

generalizability) of the chosen model. In this study, bootstrap method is applied to the test set so as

to provide an estimate of model variance of the chosen networks.

For this application, many components of a network are easily Þxed due to the nature of the

problem. Two important components are not: the number of hidden nodes and the number of input

nodes. The speciÞcations of the neural network models to be used are as follows:
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� The number of hidden layers. For this research, the number is Þxed at one.

� The number of hidden nodes. As mentioned before, functional analysis theory requires a large
number of nodes for the approximation to be sufficiently close. On the other hand, too many

hidden nodes may result in over-Þtting the training data and losing the ability to generalize (i.e.,

to predict an unseen object).

� The number of output nodes. As this research deals with a two-group classiÞcation problem,

only one output node is required.

� The arcs. The arcs, as illustrated in Figure 3, are deÞned for nodes in adjacent layers and also
from input layer to the output node. This topology allows us to increase the parameters by the

same amount when we increase the hidden nodes by one. For the example in Figure 3, every

increase in hidden nodes increases the arcs by four. (For the conventional perceptron, a network

with one hidden node is essentially the same as one with zero hidden nodes.)

� The node scalars. In this project, every hidden node and every output node has a scalar.

� The number of input nodes. This is determined by a feature selection procedure.

The model building process is as follows: First, all 30 input features of the Wisconsin data set

were used. The number of hidden nodes was varied from 0 to 1 to 2, and so forth. This process

is automatic. The training algorithm for this successive expansion of the network architecture was

developed by Ahn17. The architecture with the smallest SSE in the validation set is chosen. Then the

input variables are eliminated one at a time until some stopping criterion is met. After the number

of input variables is Þxed, experiments with hidden nodes are conducted once more to select the

appropriate architecture.

The input variable selection method is based on backward elimination. Starting with the full list

of variables, a variable is eliminated one at a time. At any given time, let a neural network be referred

to as the full model whereas the network with one less input node be referred to as the reduced model.

SpeciÞcally, a reduced model is obtained from the full model by eliminating an input node and the

associated arcs. DeÞne

SSEF = SSE (of the validation set) of the full model,

SSER(xj) = SSE (of the validation set) of the reduced model when variable xj is eliminated.

Among the variables to be eliminated, the one with the smallest SSER is selected. In principle, one

would expect that SSER(xj) > SSEF for any variable xj since the reduced model is a proper subset of

the full model and thus the full model should have smaller errors. Therefore, another way of selecting

the variable to eliminate is based on the smallest SSER(xj) - SSEF . Because of the nonconvex nature

of the optimization problem and also the SSE is based on the validation set rather than the training

set, it can happen that the difference may not be positive.
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Bootstrap estimation

Given a model g trained from a data set D, and an observation x (a point of D, for example), we

can obtain an estimate g(x). In our application, the model g is a neural network, the data set is

the training set, and the estimate g(x) is the network output, the posterior probability, for any input

vector x. A natural question is: How accurate is this estimate? One method to provide an accuracy

measure is the bootstrap method developed by Efron10. Let se(g(x)) denote the standard error of the

estimate. (We use standard error, as in Efron and Tibshirani10, to mean the standard deviation of

any sample estimator. In this case, it is the standard deviation of g(x) over all possible samples of the

same size as D from the population.) The quantity se2(g(x)) is the model variance mentioned in the

previous section. The bootstrap method produces an estimate of se(g(x)).

The method is straightforward. We replicate D by taking another sample of the same size, with

replacement, from D. Suppose there are B replications or bootstrap samples. Each bootstrap sample

Dj is used to provide an estimate gj(x). Then, the bootstrap standard error of g(x) can be calculated:

seB(x) =

sPB
j=1 (g

j(x)− g(x))2
B − 1 (3)

where g(x) =
PB
j=1 g

j(x)/B. The bootstrap standard error is a consistent estimate of se(g(x)) since,

according to Efron and Tibshirani10,

lim
B→∞

seB(x) = se(g(x))

For our application here, the estimate g(x) is the posterior probability, and the standard error,

using the Bernoulli variable formula, should be se(g(x)) = (g(x)(1− g(x)))1/2. A relevant question

here would be: If we already know the standard error, why do we need to use the bootstrap method?

The answer lies in the fact that the standard error is a function of the estimated posterior probability.

From the data setD, we would have only one estimated posterior probability for each observation x. If

the estimate is not accurate, then the standard error will not either. Therefore, the bootstrap method

gives us an independent means of measuring the accuracy of our estimated posterior probability.

Modeling Breast Cancer Diagnosis

The Wisconsin data set was randomly divided into 3 parts: about 60% for the training set, 20% for the

validation set and the remaining 20% for the test set. The table below shows the exact composition

of the three sets.

Class Training Set Validation Set Test Set Total
Malignant 137 37 38 212
Benign 204 77 76 357
Total 341 114 114 569

Each case is assigned a target variable y = 1 if it is malignant, and y = 0 if it is benign. As

mentioned before, each network has one output node and the arcs are deÞned for nodes between
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adjacent layers and also between input nodes and the output node. All hidden nodes and the output

node have a scalar.

Selection of architecture

The Þrst set of runs used all 30 features as the input variables. The number of hidden nodes varied

from 0 to 2. The validation SSE for 0, 1 and 2 hidden nodes are, respectively, 2.00, 2.00, and 3.00.

The architecture with 0 hidden nodes was chosen.

Selection of input variables

Based on the architecture of 0 hidden nodes, backward elimination was used to determine the input

variables. Figure 4 shows the SSE curve for both the training set and the validation set as the input

variables are eliminated. The lowest SSE of the validation set was 0 for the 12 and 9 variable models.

The 9 variable model was selected as the recommended model.

(Insert Figure 4 about here)

The 9 variables selected are: (Recall the 10 features are: area, radius, perimeter, symmetry, number

and size of concavities, fractal dimension of the boundary, compactness, smoothness, and texture.)

� Mean (of): perimeter, smoothness, number and size of concavities.

� Standard error (of): texture.

� Extreme (maximum, of): symmetry, compactness, smoothness, and texture.

Experiment with hidden nodes was carried out once more to determine the best architecture for

the set of 9 input variables. The validation SSE for 0, 1 and 2 hidden nodes are, respectively, 0.000,

0.000, and 0.777. The recommended architecture is one with 0 hidden nodes.

Results

All the posterior probabilities reported here are for the test set observations. Since these were

not previously seen by any of the models, they offer an independent, unbiased evaluation of the

generalizability of the models.

Classification using point estimates of posterior probability

For the training set of 341 observations, two neural networks with 0 hidden nodes were obtained:

one for the entire set of 30 features, and one for the 9 variables determined by backward elimination.

Each network is used to estimate the posterior probabilities of the observations in the test set. The

following tables show the results of these estimates. For ease of reference, we will call the results from

these networks the conventional estimates.
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According to Mangasarian, et al.3, a case with malignancy probability less than 0.30 is classiÞed as

benign, above 0.70 as malignant, and between .30 and .70 is classiÞed as indeterminate and a biopsy

is recommended. Table 1 shows that using all 30 variables, of the 76 benign cases in the test set, 74

are classiÞed as benign whereas 2 are classiÞed as malignant. Using 9 variables, the benign cases have

75 correct classiÞcations and 1 misclassiÞcation. All the malignant ones are correctly classiÞed. Two

points are worthy of note. First, there are no indeterminate classiÞcations in both the 30 and 9 variable

models, and indeed, because of the logistic activation function, the network output is overwhelmingly

0 or 1. Secondly, the 9 variable model outperforms the 30 variable model. This is a clear illustration

of the value of using a carefully selected feature set for classiÞcation.

(Insert Table 1 about here)

Table 2 shows the rates of classiÞcation. The correct classiÞcations obviously refer to those benign

cases classiÞed as benign and those malignant ones classiÞed as malignant. So, of the 114 cases in

the test set, 96.49% were correctly classiÞed by the 30 variable model. This table clearly shows the

superiority of the 9 variable model.

(Insert Table 2 about here)

Tables 3 and 4 are based on the mean of the bootstrap estimates. Two hundred samples were

generated from the training set with replacement. This large number was chosen on the recommenda-

tion of Efron and Tibshirani10 that a large number of replications is necessary to produce an accurate

estimate of the standard error. Each sample was used to train a neural network with 0 hidden nodes.

Each of the 200 trained networks was used to estimate the posterior probability distribution of the

test set. The mean of the 200 network outputs for each case in the test set is used as the estimated

posterior probability. Using the bootstrap mean as an estimator is dubbed by Breiman22 as bagging

(bootstrap aggregating); so these estimates will be called the bagging estimates. Whereas each network

output still tends to be 0 or 1, the mean has more values in the middle range, as seen from the greater

number of cases classiÞed as indeterminate.

However, the bootstrap method allows us a more accurate measure of the accuracy of a model. As

mentioned before, se2
B(x) estimates the model variance for an observation and therefore

P
x se

2
B(x)/n

is an estimate of the model variance for the test set, where n is the size of the set. The variances are

.02765 and 0.01908 for the 30 and the 9 variable model, respectively. So the 9 variable model not only

has more correct classiÞcations but is more accurate in its estimates also. These results demonstrate

the clear advantage of using feature selection in model building.

(Insert Table 3 about here)

(Insert Table 4 about here)

Based on the rates of classiÞcation in the Table 4, it seems that the bootstrap estimates are not

as good as the conventional estimates.
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For a baseline comparison, the posterior probability calculated by the Wisconsin approach was

reproduced for each test case. Recall that Parzen�s window approach is similar to the estimation of

relative frequency and the entire data set is included for the calculation of the probability distribution.

Therefore, the test set is not truly an unseen set. The results in Table 5 indicate that the LP model

is inferior to the conventional estimates of both 30 and 9 variable models and the bootstrap estimate

of the 9 variable model, but is slightly better than the bootstrap estimate of the 30 variable model.

(Insert Table 5 about here)

Finally, to summarize the classiÞcation efficiency of all the neural network models, we constructed

a receiver operating characteristic (ROC) curve for each model23. In medical diagnosis, a model�s

sensitivity is the proportion of positive (malignant) cases correctly diagnosed (true positives) and its

speciÞcity is the proportion of negative (benign) cases correctly classiÞed (true negatives). 1-speciÞcity

is the proportion of false positives. The ROC curve plots the proportion of true positives (sensitivity)

of a model against its proportion of false positives across a range of cut-off values. The greater the

area under the curve (closer to 1), the better the classiÞcation efficiency of the model23. The ROC

curves of the 30-variable and 9-variable, conventional network and bootstrap models, are shown in

Figure 5. The area under the curve measures the discrimination, that is, the ability of the test to

correctly classify those who are malignant or benign. As this area for every curve is close to 1, one

can conclude that the models have high efficiency (Figure 5).

(Insert Figure 5 about here)

Estimates of standard errors

The standard error of the estimated posterior probability is calculated using equation (3). To present

the results in a compact way, we deÞne the following terms:

Definition 1 seB: The standard error computed from the bootstrap estimates.

Definition 2 seT : The standard error of a Bernoulli variable; i.e.,
q bpj(1− bpj) where bpj is the

estimated posterior probability for observation j. (T stands for Theoretical.)

Table 6 is a summary of the correlation between these two standard errors for the various models.

The table shows that for the 30 variable model, when seT is calculated with bp given by the conventional
estimate, the coefficient of correlation is .2257. The coefficient of correlation goes to almost one when

we use the bagging estimate for bp. So it appears that the bootstrap estimate is the parameter for the
Bernoulli variable representing the state of malignancy. It also means that for all practical purposes

the calculation of seB will not be necessary.

(Insert Table 6 about here)
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Classification using bootstrap intervals

An advantage of bootstrap is the availability of empirical distributions. In this application, each case

in the test set has 200 estimated posterior probabilities from the bootstrap. One can thus obtain

an interval estimate (which can be standardized into bootstrap-t interval in Efron and Tibshirani10)

directly from the bootstrap estimates. Let pαj denote the αth percentile of the posterior probability

distribution for case j. Then the 1− 2α bootstrap interval estimate (assuming α < 0.5) for case j ish
pαj , p

1−α
j

i
.

With these intervals, one can possibly redeÞne the rules of classiÞcation as follows: If the malig-

nancy probability interval limits are all below 0.5, then the case is classiÞed as benign; if the limits are

all above 0.5, then the case is classiÞed as malignant; else, it is classiÞed as indeterminate. In other

words, a case is classiÞed as indeterminate if the estimated interval includes 0.5.

Tables 7 and 8 show the results of this classiÞcation rule using 90% interval estimates. One big

difference from the previous classiÞcation results is that there are no misclassiÞcations for the 30

variable model. All models have many more indeterminate classiÞcations. So it appears that using

such intervals, the estimates are more conservative in that more cases are recommended for further

medical analyses. With very few misclassiÞcations, particularly no misdiagnosis of malignant cases,

this method of estimation should be more adoptable as it gives greater conÞdence in the Þnal result.

(Insert Table 7 about here)

(Insert Table 8 about here)

One interesting result is that the interval for every indeterminate case is [0,1] (to 3 signiÞcant

digits) whereas the interval for every other case reduces to a point, either 0 or 1. So when comparing

models with different input variables, a model with a greater number of indeterminate cases has a

larger standard error.

Conclusions

The motivation for our study is to provide a more complete and cohesive conceptual framework for

using neural networks to estimate posterior probabilities in classiÞcation problems. The illustrative

example of breast cancer is particularly appropriate for demonstrating the capabilities of OR/MS

models for solving problems of great concern to the society.

This study proposes an alternative to the MSM-T classiÞcation procedure used by the Wisconsin

research team in breast cancer diagnosis. Our diagnostic scheme, based upon artiÞcial neural networks,

is shown to provide a direct estimate of the posterior probability whereas MSM-T, like most other

available procedures, undertakes an indirect approach. Perhaps it should also be pointed out that

most researchers commonly use neural network models as a black box for classiÞcation. The emphasis

often is on the comparison with traditional statistical or mathematical programming techniques. As a

result, the model is either inappropriately applied or the beneÞts associated with these models are not
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fully exploited. This paper gives a clear explanation as to why neural network models are appropriate

for classiÞcation and that the least squares principle provides the conceptual basis for an unbiased

estimate of the posterior probability.

Neural network models have been criticized for their inability to perform statistical inference,

variable selection and interval estimation. Besides using a training sample for parameter estimation of

arc weights, this study utilizes a validation sample for model selection and a third unseen test sample

for estimating the posterior probabilities and classiÞcation rate. The fact that the chosen networks in

this study turned out to have no hidden nodes serves to illustrate our model selection procedure for

balancing model bias with model variance.

The bootstrap approach allows the opportunity to estimate the posterior probabilities using the

bootstrapped sample means and t-intervals. The bootstrapped means and intervals provide the re-

searcher with a measure of sampling variability and other valuable insights on the behavior of posterior

probability distributions.

Finally, ROC curves provide information about a model�s classiÞcation efficiency. In medical

diagnosis, a false negative is probably more costly than a false positive. As the ROC curve measures

the 1 - the false negative rate on the Y axis versus the false positive rate on the X axis, we would

ideally like to see a curve that rapidly increases towards the upper left hand corner of the graph. This

would indicate that the model is able to establish small false negative and false positive rates for a

range of cutoff points. The area under the curve quantiÞes how rapidly an ROC curve rises, and the

closer the area is to 1, the better the discrimination of the model. As seen in Figure 5, the network

models are all very good at keeping misdiagnoses to small numbers.
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Figures and Tables

Figure 1: Drawing neucleus boundaries

Figure 2: Conditional probability distributions from the LP model

17



Input layer

Hidden layer

Output layer
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30 Variables 9 Variables
ClassiÞcation Benign Malignant Benign Malignant
Benign 74 2 75 0

Indeterminate 0 0 0 0
Malignant 2 36 1 38

Table 1: ClassiÞcation Using Conventional Estimates

30 Variables 9 Variables
Correct classiÞcation 96.49% 99.12%
Indeterminate 0.00 0.00

Incorrect classiÞcation 3.51 0.88

Table 2: ClassiÞcation Rates Using Conventional Estimates

30 Variables 9 Variables
ClassiÞcation Benign Malignant Benign Malignant
Benign 71 0 73 0

Indeterminate 3 2 2 0
Malignant 2 36 1 38

Table 3: ClassiÞcation Using Bagging Estimates of Posterior Probabilities
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30 Variables 9 Variables
Correct classiÞcation 93.86% 98.37%
Indeterminate 4.39 1.75

Incorrect classiÞcation 1.75 0.88

Table 4: ClassiÞcation Rates Using Bagging Estimates

ClassiÞcation Benign Malignant
Benign 72 1 Correct ClassiÞcation 94.74%

Indeterminate 2 1 Indeterminate 2.63
Malignant 2 36 Incorrect ClassiÞcation 2.63

Table 5: ClassiÞcation Based on LP Model

bp 30 Variables 9 Variables
Conventional estimate .2257 .3358
Bagging estimate .9999 .9998

Table 6: Correlation between Theoretical and Calculated Standard Errors

30 Variables 9 Variables
ClassiÞcation Benign Malignant Benign Malignant
Benign 62 0 65 0

Indeterminate 14 6 10 2
Malignant 0 32 1 36

Table 7: ClassiÞcation Using Bootstrap Intervals

30 Variables 9 Variables
Correct classiÞcation 82.46% 88.59%
Indeterminate 17.54 10.53

Incorrect classiÞcation 0.00 0.88

Table 8: ClassiÞcation Rates Using Bootstrap Intervals

21




