title graphic - seattle skyline  
Michael Strickland
Michael Strickland    
 
Associate Professor
Department of Physics
Kent State University
Kent, OH 44242 USA

mstrick6 {at} kent.edu
Office: 206B Smith Hall
Phone: +1.330.672.3771
Fax: +1.330.672.2959
Links
  My Publications   My Publication Statistics   Group Members  
  arXiv.org   inSpire HEP DB   Particle Data Group  
  Phys Rev Focus   QGP Instability Pics   Neural Networks  
  Kent State University   KSU Physics   KSU QCD Seminar  
  RHIC   LHC   GSI  

Curriculum Vitae

Research Interests

Nuclear and High Energy Theory
  • Heavy ion collisions/quark-gluon plasma (QGP)
  • Finite temperature/density quantum field theory (QFT)
  • Diagrammatic resummation methods for non-abelian gauge theories
  • Non-equilibrium field theory/QFT
  • Numerical solution of QCD Boltzmann-Vlasov equations; non-linear dynamics; plasma turbulence
  • Non-perturbative QFT
Astrophysics
  • QCD equation of state at high-temperatures
  • QCD equation of state at low-temperatures and high densities
  • Thermalization and reheating of the universe
Atomic Physics
  • Bose-Einstein condensation
  • Critical behavior of low-temperature atomic gases
General/Mathematical
  • Functional renormalization group methods
  • Optimization of renormalization group flow

Education
  • 1988 - High School, North Carolina School of Science and Mathematics, Durham, NC
  • 1992 - BS Physics, Univ. of North Carolina, Chapel Hill, NC
  • 1994 - MS Physics, Duke Univ., Durham, NC
  • 1997 - PhD Physics, Duke Univ., Durham, NC ; Dissertation topic Dynamical mass generation and confinement at finite-temperature

Places I've worked
2013-Present
Associate Professor, Kent State University, Kent, Ohio, USA
2008-Present
Adjunct Fellow, Frankfurt Institute for Advanced Studies, Frankurt am Main, Germany
2008-2012
Assistant Professor, Gettysburg College, Gettysburg, Pennsylvania, USA
2005-2008
Junior Fellow, Frankfurt Institute for Advanced Studies and Institute for Theoretical Physics, Frankurt am Main, Germany
2004-2005
Research Scientist, University of Helsinki, Helsinki, Finland
2002-2004
Lise Meitner Fellow, Institute for Theoretical Physics, Vienna Technical University, Vienna, Austria
2001-2002
Visiting Assistant Professor, Nuclear Theory Group, Duke Univ., Durham, NC
1999-2001
Postdoc, Nuclear Theory Group, Univ. of Washington, Seattle, WA
1997-1999
Postdoc, Nuclear Theory Group, Ohio State Univ., Columbus, OH

Awards, Grants, and Fellowships
2013-
DOE Grant, Topical Collaboration on Jet and Electromagnetic Tomography of Extreme Phases of Matter in Heavy-ion Collisions
2011-2014
NSF Grant, Dissipative Dynamics of the Quark Gluon Plasma
2010-2012
Kavli Institute for Theoretical Physics (KITP) Scholar, University of California Santa Barbara
2002-2004
Lise Meitner Fellow, Austria National Science Foundation (FWF)

Group Members
 
The Search for the Quark-Gluon Plasma

My primary interest is the physics of the quark-gluon plasma (QGP). These plasmas are predicted by quantum chromodynamics (QCD) to be created during ultrarelativistic heavy-ion collisions (RHIC, LHC). My job as a theorist is to help experimentalists determine basic properties of the quark-gluon plasma based on typical high-energy particle collision observables such as electromagnetic and hadronic spectra.

Studying the quark-gluon plasma using heavy-ion collisions helps physicists understand times between approximately 10-12 and 10-5 seconds after the Big Bang; a time period in which the entire universe was a super-hot plasma of quarks, gluons, and other fundamental particles.

In the picture above I show the phase diagram for matter. On the vertical axis is the temperature and on the horizontal axis is the net baryon density of the matter. The RHIC and LHC heavy ion experiments probe the area of high temperature (~1012 Kelvins) and low baryon density.

Below I show a visualization of the space-time development of color correlations in a non-Abelian plasma subject to the chromo-Weibel instability. [Click on the image for more information.]


Finally, I show a visualization of a CPIC (Colored-Particle-in-Cell) simulation of a high-energy dijet traversing a thermalized gluon plasma. Color indicates high field energy densities which have been induced by the dijet's passage and the small arrows indicate the chromo-Poynting vector which shows the direction of chromofield energy flow. [Click on the picture for a larger version.]


Publications
  1. J.O. Andersen, N. Haque, M.G. Mustafa, M. Strickland, and N. Su, Equation of state for QCD at finite temperature and density -- Resummation versus lattice data, PDF, Abstract, (2014).
  2. M. Nopoush, R. Ryblewski, and M. Strickland, Anisotropic hydrodynamics for conformal Gubser flow, PDF, Abstract, (2014).
  3. M. Strickland, Anisotropic Hydrodynamics: Three lectures, PDF, Abstract, (2014).
  4. G.S. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and M. Strickland, Studying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equation, PDF, Abstract, (2014).
  5. G.S. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and M. Strickland, A new exact solution of the relativistic Boltzmann equation and its hydrodynamic limit, Phys. Rev. Lett. 113, 202301, PDF, Abstract, (2014).
  6. U.W. Heinz, D. Bazow, and M. Strickland, Viscous hydrodynamics for strongly anisotropic expansion, PDF, Abstract, (2014).
  7. A. Jaiswal, R. Ryblewski, and M. Strickland, Transport coefficients for bulk viscous evolution in the relaxation time approximation, Phys. Rev. C 90, 044908, PDF, Abstract, (2014).
  8. G.S. Denicol, W. Florkowski, R. Ryblewski, and M. Strickland, Shear-bulk coupling in nonconformal hydrodynamics, Phys. Rev. C 90, 044905, PDF, Abstract, (2014).
  9. M. Strickland, J.O. Andersen, A. Bandyopadhyay, N. Haque, M.G. Mustafa, and N. Su, Three loop HTL perturbation theory at finite temperature and chemical potential, PDF, Abstract, (2014).
  10. M. Nopoush, R. Ryblewski, and M. Strickland, Bulk viscous evolution within anisotropic hydrodynamics, Phys. Rev. C 90, 014908, PDF, Abstract, (2014).
  11. W. Florkowski, R. Ryblewski, M. Strickland, and A. Tinti, Leading-order anisotropic hydrodynamics for systems with massive particles, Phys. Rev. C 89, 054909, PDF, Abstract, (2014).
  12. W. Florkowski, E. Maksymiuk, R. Ryblewski, and M. Strickland, Exact solution of the (0+1)-dimensional Boltzmann equation for a massive gas, Phys. Rev. C 89, 054908, PDF, Abstract, (2014).
  13. N. Haque, A. Bandyopadhyay, J.O. Andersen, M.G. Mustafa, M. Strickland, and N. Su, Three-loop HTLpt thermodynamics at finite temperature and chemical potential, Journal of High Energy Physics 2014, 5, 1-46 PDF, Abstract, (2014).
  14. M. Strickland, Anisotropic Hydrodynamics: Motivation and Methodology, Nucl. Phys. A 926, 92, PDF, Abstract, (2014).
  15. M. Strickland, Thermalization and isotropization in heavy-ion collisions, PDF, Abstract, (2013).
  16. D. Bazow, U.W. Heinz, and M. Strickland, Second-order (2+1)-dimensional anisotropic hydrodynamics, PDF, Abstract, (2013).
  17. N. Haque, J.O. Andersen, M.G. Mustafa, M. Strickland, and N. Su, Three-loop HTLpt Pressure and Susceptibilities at Finite Temperature and Density, Phys. Rev. D 89, 061701(R), PDF, Abstract, (2013).
  18. J. Alford and M. Strickland, Charmonia and Bottomonia in a Magnetic Field, Phys. Rev. D 88, 105017, PDF, Abstract, (2013).
  19. S. Mogliacci, J.O. Andersen, M. Strickland, N. Su, and A. Vuorinen, Equation of State of hot and dense QCD: Resummed perturbation theory confronts lattice data, Journal of High Energy Physics 2013, 12, 1, PDF, Abstract, (2013).
  20. W. Florkowski, R. Ryblewski, and M. Strickland, Testing viscous and anisotropic hydrodynamics in an exactly solvable case, Phys. Rev. C 88, 024903, PDF, Abstract, (2013).
  21. C.S. Machado, F.S. Navarra, E.G. de Oliveira, J. Noronha, and M. Strickland, Heavy quarkonium production in a strong magnetic field, Phys. Rev. D 88, 034009, PDF, Abstract, (2013).
  22. W. Florkowski, R. Ryblewski, and M. Strickland, Anisotropic Hydrodynamics for Rapidly Expanding Systems, Nuclear Physics A 916, 249, PDF, Abstract, (2013).
  23. M. Attems, A. Rebhan, and M. Strickland, The chromo-Weibel instability in an expanding background, Acta Phys. Polon. Supp. 6, 393-402, PDF, Abstract, (2013).
  24. N. Haque, M.G. Mustafa, and M. Strickland, Quark Number Susceptibilities from Two-Loop Hard Thermal Loop Perturbation Theory, Journal of High Energy Physics 2013, 7, 184, PDF, Abstract, (2013).
  25. A. Mocsy, P. Petreczky, and M. Strickland, Quarkonia in the Quark Gluon Plasma, Int. J. of Mod. Phys. A, Vol. 28, 1340012, PDF, Abstract, (2013).
  26. W. Florkowski, M. Martinez, R. Ryblewski, and M. Strickland, Anisotropic hydrodynamics - basic concepts, PoS ConfinementX, 221, PDF, Abstract, (2013).
  27. M. Attems, A. Rebhan, and M. Strickland, Longitudinal thermalization via the chromo-Weibel instability, PoS ConfinementX, 176, PDF, Abstract, (2013).
  28. N. Haque, M.G. Mustafa, and M. Strickland, Two-loop HTL pressure at finite temperature and chemical potential, Phys. Rev. D 87, 105007, PDF, Abstract, (2013).
  29. M. Strickland, Bottomonia in the Quark Gluon Plasma, J. Phys.: Conf. Ser. 432, 012015, PDF, Abstract, (2013).
  30. V. Dexheimer, D. P. Menezes, and M. Strickland, The influence of strong magnetic fields on proto-quark stars, J. Phys. G: Nucl. Part. Phys. 41, 015203, PDF, Abstract, (2014).
  31. W. Florkowski, M. Martinez, R. Ryblewski, and M. Strickland, Anisotropic hydrodynamics, Nuclear Physics A 904-905, 803c, PDF, Abstract, (2013).
  32. W. Florkowski, R. Maj, R. Ryblewski, and M. Strickland, Hydrodynamics of anisotropic quark and gluon fluids, Phys. Rev. C 87, 034914, PDF, Abstract, (2013).
  33. M. Strickland, V. Dexheimer, and D.P. Menezes, Bulk Properties of a Fermi Gas in a Magnetic Field, Phys. Rev. D 86, 125032, PDF, Abstract, (2012).
  34. M. Strickland, Highly anisotropic dissipative hydrodynamics, AIP Conf. Proc. 1560, 658-662, PDF, Abstract, (2013).
  35. M. Attems, A. Rebhan, and M. Strickland, Instabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulations, Phys. Rev. D 87, 025010, PDF, Abstract, (2013).
  36. M. Strickland, Thermal Bottomonium Suppression, AIP Conf. Proc. 1520, 179-184 PDF, Abstract, (2013).
  37. W. Florkowski, R. Ryblewski, and M. Strickland, Chromoelectric oscillations in a dynamically evolving anisotropic background, Phys. Rev. D 86, 085023, PDF, Abstract, (2012).
  38. M. Martinez, R. Ryblewski, and M. Strickland, Boost-Invariant (2+1)-dimensional Anisotropic Hydrodynamics, Phys. Rev. C 85, 064913, PDF, Abstract, (2012).
  39. M. Strickland and D. Bazow, Thermal Bottomonium Suppression at RHIC and LHC, Nuclear Physics A 879, 25-58, PDF, Abstract, (2012).
  40. M. Strickland, Thermal Upsilon(1s) and Chi_b1 Suppression in sqrt(s_NN)=2.76 TeV Pb-Pb Collisions at the LHC, Phys. Rev. Lett. 107, 132301, PDF, Abstract, (2011).
  41. M. Attems, A. Rebhan, and M. Strickland, Plasma instabilities in heavy ion collisions, APCPC 1343, 614 (2011).
  42. J.O. Andersen, Lars E. Leganger, M. Strickland, and N. Su, QCD Trace Anomaly, Phys. Rev. D 84, 087703, PDF, Abstract, (2011).
  43. J.O. Andersen, Lars E. Leganger, M. Strickland, and N. Su, Three-loop HTL QCD thermodynamics, Journal of High Energy Physics 2011, 8, 53, PDF, Abstract, (2011).
  44. M. Margotta, K. McCarty, C. McGahan, M. Strickland, and D. Yager-Elorriaga, Quarkonium states in a complex-valued potential, Phys. Rev. D 83, 105019, PDF, Abstract, (2011).
  45. A. Ipp, A. Rebhan, and M. Strickland, Non-Abelian plasma instabilities: SU(3) vs. SU(2), Phys. Rev. D 84, 056003, PDF, Abstract, (2011).
  46. M. Martinez and M. Strickland, Non-boost-invariant anisotropic dynamics, Nuclear Physics A 856, 68-87, PDF, Abstract, (2011).
  47. M. Strickland, J.O. Andersen, Lars E. Leganger,and N. Su, Hard-thermal-loop QCD Thermodynamics, Prog.Theor.Phys.Suppl. 187, 106-114, PDF, Abstract, (2011).
  48. J.O. Andersen, Lars E. Leganger, M. Strickland, and N. Su, NNLO hard-thermal-loop thermodynamics for QCD, Physics Letters B 696, Issue 5, 468, PDF, Abstract, (2011).
  49. M. Martinez and M. Strickland, Dissipative Dynamics of Highly Anisotropic Systems, Nuclear Physics A 848, 183, PDF, Abstract, (2010).
  50. J.O. Andersen, M. Strickland, and N. Su, Three-loop HTL gluon thermodynamics at intermediate coupling, Journal of High Energy Physics 8, 1, PDF, Abstract, (2010).
  51. M. Mannarelli, C. Manuel, S. Gonzalez-Solis, and M. Strickland, Jet energy loss in the quark-gluon plasma by stream instabilities, Phys. Rev. D 81, 074036, PDF, Abstract, (2010).
  52. N. Su, J.O. Andersen, and M. Strickland, Hard-thermal-loop QED thermodynamics, Chinese Physics C 34 (09), 1527, PDF, Abstract, (2010).
  53. J.O. Andersen, M. Strickland, and N. Su, Gluon Thermodynamics at Intermediate Coupling, Phys. Rev. Lett. 104, 122003, PDF, Abstract, (2010).
  54. M. Strickland, N. Su, and J.O. Andersen, QED Thermodynamics at Intermediate Coupling, Acta Physica Polonica B, Proceedings Supplement, Vol. 3, No. 3, 727, PDF, Abstract, (2010).
  55. M. Martinez and M. Strickland, Matching pre-equilibrium dynamics and viscous hydrodynamics, Phys. Rev. C 81, 024906, PDF, Abstract, (2010).
  56. M. Martinez and M. Strickland, Constraining the onset of viscous hydrodynamics, Nuclear Physics A 830, 615c, PDF, Abstract, (2009).
  57. J.O. Andersen, M. Strickland, and N. Su, Three-loop HTL Free Energy for QED, Phys. Rev. D 80, 085015, PDF, Abstract, (2009).
  58. M. Strickland and D. Yager-Elorriaga, A Parallel Algorithm for Solving the 3d Schrodinger Equation, Journal of Computational Physics 229, 6015, PDF, Abstract, (2010).
  59. A. Dumitru, Y. Guo, and M. Strickland, The imaginary part of the static gluon propagator in an anisotropic (viscous) QCD plasma, Phys. Rev. D 79, 114003, PDF, Abstract, (2009).
  60. M. Martinez and M. Strickland, Constraining relativistic viscous hydrodynamical evolution, Phys. Rev. C 79, 044903, PDF, Abstract, (2009).
  61. A. Dumitru, Y. Guo, A. Mocsy and M. Strickland, Quarkonium states in an anisotropic QCD plasma, Phys. Rev. D 79, 054019, PDF, Abstract, (2009).
  62. B. Schenke, M. Strickland, A. Dumitru, Y. Nara, and C. Greiner, Transverse momentum diffusion and jet energy loss in non-Abelian plasmas, Phys. Rev. C 79, 034903, PDF, Abstract, (2009).
  63. M. Martinez and M. Strickland, Suppression of forward dilepton production from an anisotropic quark-gluon plasma, Eur. Phys. J. C 61: 905-913, PDF, Abstract, (2009).
  64. M. Martinez and M. Strickland, Pre-equilibrium dilepton production from an anisotropic quark-gluon plasma, Phys. Rev. C 78, 034917, PDF, Abstract, (2008).
  65. A. Dumitru, Y. Nara, B. Schenke, and M. Strickland, QGP collective effects and jet transport, J. Phys. G: Nucl. Part. Phys. 35 104109, PDF, Abstract, (2008).
  66. M. Martinez and M. Strickland, Dilepton production as a measure of QGP thermalization time, J. Phys. G: Nucl. Part. Phys. 35 104162 PDF, Abstract, (2008).
  67. A. Rebhan, M. Strickland, and M. Attems, Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations, Phys. Rev. D 78, 045023, PDF, Abstract, (2008).
  68. A. Dumitru, Y. Guo, and M. Strickland, The heavy-quark potential in an anisotropic plasma, Phys. Lett. B 662, 37-42, PDF, Abstract, (2008).
  69. A. Dumitru, Y. Nara, B. Schenke, and M. Strickland, Jet broadening in unstable non-Abelian plasmas, Phys. Rev. C 78, 024909, PDF, Abstract, (2007).
  70. M. Martinez and M. Strickland, Measuring QGP thermalization time with dileptons, Phys. Rev. Lett. 100, 102301, PDF, Abstract, (2008).
  71. B. Schenke and M. Strickland, Photon production from an anisotropic quark-gluon plasma, Phys. Rev. D76, 025023, PDF, Abstract (2007).
  72. A. Dumitru, Y. Nara, and M. Strickland, Ultraviolet avalanche in anisotropic non-Abelian plasmas, Phys. Rev. D 75, 025016, PDF, Abstract, (2007).
  73. M. Strickland, Thermalization and the chromo-Weibel instability, J. Phys. G: Nucl. Part. Phys. 34 S429-S435 PDF, Abstract, (2006)
  74. M. Strickland, The chromo-Weibel instability, Braz. J. Phys. 37, 762, PDF, Abstract, (2006).
  75. M. Strickland, Thermalization and plasma instabilities, Nucl. Phys. A785, 50, PDF, Abstract (2006).
  76. B. Schenke and M. Strickland, Fermionic Collective Modes of an Anisotropic Quark-Gluon Plasma, Phys. Rev. D74, 065004, PDF, Abstract (2006).
  77. B. Schenke, M. Strickland, C. Greiner, and M.H. Thoma, A model of the effect of collisions on QCD plasma instabilities, Phys. Rev. D73, 125004, PDF, Abstract (2006).
  78. M. Strickland, Visualizing Color Plasma Instabilities, Eur. Phys. J. A29, 59-63, PDF, Abstract (2006).
  79. M. Strickland, Hard-Loop Dynamics of Non-Abelian Plasma Instabilities, Nucl. Phys. A774 779-782 Contribution to Proceedings of Quark Matter 2005, Budapest, Hungary Aug 4-9, PDF, Abstract (2006).
  80. A. Rebhan, P. Romatschke and M. Strickland, Quark-Gluon-Plasma Instabilities in Discretized Hard-Loop Approximation, Journal of High Energy Physics 09, 041, PDF, Abstract (2005).
  81. A. Rebhan, P. Romatschke and M. Strickland, Hard-Loop Dynamics of Non-Abelian Plasma Instabilities, Phys. Rev. Lett. 94, 102303, PDF, Abstract (2005).
  82. P. Romatschke and M. Strickland, Progress in Anisotropic Plasma Physics, Proceedings of Strong and Electroweak Matter 2004, Helsinki, Finland, World Scientific Publishing Co, ISBN 981-256-135-8, Singapore 2005, PDF, Abstract (2004).
  83. P. Romatschke and M. Strickland, Collisional Energy Loss of a Heavy Quark in an Anisotropic Quark-Gluon Plasma, Phys. Rev. D71, 125008, PDF, Abstract (2005).
  84. P. Romatschke and M. Strickland, Collective Modes of an Anisotropic Quark-Gluon Plasma II, Phys.Rev. D70, 116006, PDF, Abstract (2004).
  85. J.O. Andersen and M. Strickland, Three-loop Phi-derivable Approximation in QED, Phys.Rev. D71, 025011, PDF, Abstract (2004).
  86. J.O. Andersen and M. Strickland, Resummation in Hot Field Theories (Review), Annals of Physics 317/2, 281, PDF, Abstract, (2005).
  87. St. Mrowczynski, A. Rebhan, and M. Strickland, Hard-Loop Effective Action for Anisotropic Plasmas, Phys. Rev. D 70, 024004, PDF, Abstract, (2004).
  88. P. Romatschke and M. Strickland, Energy Loss of a Heavy Fermion in an Anisotropic QED Plasma, Phys. Rev. D 69, 065005, PDF, Abstract, (2004).
  89. P. Romatschke and M. Strickland, Collective Modes of an Anisotropic Quark-Gluon Plasma, Phys. Rev. D 68, 036004, PDF, Abstract, (2003).
  90. J.O. Andersen, E. Petitgirard, and M. Strickland, Two-loop HTL Thermodynamics with Quarks, Phys. Rev. D 70, 024004, PDF, Abstract, (2003).
  91. J.O. Andersen and M. Strickland, The Equation of State for Dense QCD and Quark Stars, Phys. Rev. D, 105001, PDF, Abstract, (2002).
  92. J.O. Andersen, E. Braaten, E. Petitgirard, and M. Strickland, HTL Perturbation Theory to Two Loops, Phys. Rev. D 66, 085016, PDF, Abstract, (2002).
  93. M. Strickland, Reorganizing Finite Temperature Field Theory Part I. Scalar Field Theory, PDF, Abstract, International Journal of Modern Physics A, Vol. 16, Suppl. 1C,1277-1280, 2001.
  94. J.O. Andersen and M. Strickland, Mass Expansions of Screened Perturbation Theory, Phys. Rev. D 64, 105012, PDF, Abstract, (2001).
  95. S.B. Liao, C.Y. Li, and M. Strickland, Self-consistent renormalization group flow, PDF, Abstract, (2000).
  96. J.O. Andersen, E. Braaten, and M. Strickland, Screened Perturbation Theory to Three Loops, Phys. Rev. D 63, 105008, PDF, Abstract, (2001).
  97. J.O. Andersen, E. Braaten, and M. Strickland, Massive basketball diagram for a thermal scalar field theory, Phys. Rev. D 62, 45004, PDF, Abstract, (2000).
  98. J.O. Andersen, E. Braaten, and M. Strickland, Hard-Thermal-Loop Resummation of the Free Energy of a Hot Quark-Gluon Gas, Phys. Rev. D 61, 74016, PDF, Abstract, (2000).
  99. S.B. Liao, J. Polonyi, and M. Strickland, Optimization of Renormalization Group Flow, Nuclear Physics B, 567, 3, 493-514, PDF, Abstract, (2000).
  100. J.O. Andersen, E. Braaten, and M. Strickland, Hard Thermal Loop Resummation of the Thermodynamics of a Hot Gluon Gas, Phys. Rev. D 61, 14017, PDF, Abstract, (2000).
  101. J.O. Andersen, E. Braaten and M. Strickland, Hard Thermal Loop Resummation of the Free Energy of a Hot Gluon Gas, Phys Rev Lett 83, 2139 PDF, Abstract, (1999).
  102. J.O. Andersen and M. Strickland, Application of Renormalization Group Techniques to a Homogeneous Bose Gas at Finite Temperature, Phys Rev A60, 1442, PDF, Abstract, (1999).
  103. M. Strickland, Non-Perturbative QED and QCD at Finite Temperature, PDF, Abstract (1998).
  104. J.O. Andersen and M. Strickland, Critical Behaviour of a Homogeneous Bose Gas at Finite Temperature, PDF, Abstract (1998).
  105. S.B. Liao and M. Strickland, Consistency of blocking transformations in the finite-temperature renormalization group, Nuclear Physics B (532)3, 753, PDF, Abstract, (1998).
  106. M. Strickland, Dynamical Mass Generation and Confinement at Finite Temperature, PhD Dissertation, Duke University, Postscript, Abstract, (1997).
  107. S.B. Liao and M. Strickland, Dimensional Crossover and Effective Exponents, Nucl. Phys. B. 497, 611,d PDF, Abstract, (1997).
  108. M. Strickland, Deuteron photodisintegration above pion threshold, HUGS@CEBAF Proceedings, Introduction, (1995).
  109. M. Pichowsky, M. Strickland, and M. Kennedy, Two-body bound states & the Bethe-Salpeter equation, HUGS@CEBAF Proceedings, Postscript, Abstract, (1995).
  110. S.B. Liao and M. Strickland, Renormalization group approach to field theory at finite temperature, Phys Rev D52, 3653, PDF, Abstract, (1995).
  111. M. Strickland, Thermal photons and dileptons from non-equilibrium quark-gluon plasma, Phys. Lett. B331, 245, Postscript, Abstract, (1994).