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Motivation

• We would like to have a first principles derivation of the
mechanisms and time scales necessary for the isotropization and
equilibration of a quark-gluon plasma.

• In addition to equilibration via 2-2 elastic scattering (super slow)
one needs to include inelastic processes, e.g. bremsstrahlung 2-3
(and 3-2) processes, and the effect of background fields.

• In equilibrium the background fields (soft modes) only serve to
screen the interaction (Debye screening). However, in a
non-equilibrium setting the background field can have non-trivial
dynamics and can have a big effect on the particles’ motion.

• Consider, for example, a spatially homogeneous plasma which
has been initialized such that it has a “temperature” anisotropy.

• In such an anisotropic plasmas new collective modes
corresponding to electro-/chromodynamic instabilities appear.
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Why anisotropic distribution functions?

Because of the natural expansion of the system the gluon distribution
functions created during relativistic heavy ion collisions are generically
locally anisotropic in momentum space.

<pT > ∼ Qs (nuclear saturation scale)

<pL > ∼ 1/τ (free streaming)

small plarge p large p

τ >> Qs

-1
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Momentum Space Anisotropy Time Dependence

τ
iso~ Q

s

-1 τ

1

(0.1-0.2 fm/c)

System is isotropic (shear viscosity = 0)

Expansion rate is much faster

than the interaction time scale

1/τ >> 1/τ

Expansion rate and isotropization via

interactions balance
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Current Filamentation
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Figure adapted from S. Mrówczyński, hep-ph/0511052.
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Abelian Plasma – The Weibel Instability
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Collective Modes of an Isotropic QGP

The isotropic hard-thermal-loop (HTL) gluon propagator is given by

∆ij = (k2 − ω2 + ΠT )−1(δij − kikj/k2) − k2

ω2
(k2 − ΠL)−1kikj/k2

with

ΠT (ω, k) =
m2

D

2

ω2

k2

[

1 − ω2 − k2

2ωk
log

ω + k

ω − k

]

,

ΠL(ω, k) = m2
D

[

ω

2k
log

ω + k

ω − k
− 1

]

,

and mD ∝ gT .

lim
ω→0

ΠL(ω, k) = m2
D electric screening

lim
ω→0

ΠT (ω, k) = 0 no magnetic screening
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Collective Modes of an Isotropic QGP

In the isotropic case the only poles are at real timelike (ω > k)
momentum. In order to determine the dispersion relations for these
excitations we can then explicitly look for the poles in the propagator.

0 = k2 − ω2
T + ΠT (ωT , k)

0 = k2 − ΠL(ωL, k)

ω/k
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Anisotropic Gluon Polarization Tensor

In order to determine the HL gluon polarization we can use either
linearized three-dimensional kinetic theory (Boltzmann-Vlasov eq)

[v · DX , δf(p,X)] + gvµFµν(X)∂(p)
ν f(p) = 0

DµFµν = Jν = g

∫

p
vνδf(p,X)

or diagrammatically

= +Π
~ g ~ g 

~ 

~ 

hardp
hardp

hardp

hardp

In both cases the result for the retarded self-energy is

Πij
ab(K) = −g2δab

∫

p

vi∂lf(p)

(

δjl − vjkl

K · V + iǫ

)

Michael Strickland – FIAS – ISMD 2006 – 6 September 2006 – p. 9/40



The nature of the anisotropy

We assume that the anisotropic distribution function can be obtained
from an arbitrary isotropic distribution function by a change of its
argument.

f(p2) → f(p2 + ξ(p · n)2)

The polarization tensor can then be written as

Πij(K) = m2
D

∫

dΩ

4π
vi vl + ξ(v · n)nl

(1 + ξ(v · n)2)2

(

δjl − vjkl

K · V + iǫ

)

where mD is the isotropic Debye mass

m2
D = − g2

2π2

∫ ∞

0
dp p2 df(p2)

dp

n

k

^

θ

P. Romatschke and MS, hep-ph/0304092.
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New Mass Scales – ξ > 0

0 0.5 1 π

θ
n

-2

-1

0

1

2

3

( 
m

+

2
, m

-2
, m

α

2
)/

m
D

2

 m
α

2
/m

D

2

 m-
2
/m

D

2

 m
+

2
/m

D

2

Angular dependence of m2
α

, m2
+, and m2

− at fixed ξ = 10.

Sketch of the effective

potential of an unstable mode.

Michael Strickland – FIAS – ISMD 2006 – 6 September 2006 – p. 11/40



Anisotropic Collective Modes ( ξ > 0)

ω/k

Anisotropic poles (ξ > 0).
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Unstable Modes – ξ > 0
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Unstable Modes Cartoon – Increasing ξ
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Anisotropic HL Effective Action

Using the requirement of gauge invari-
ance it is possible to determine all
n-point functions.

SHL = −g2

2

∫

x

∫

p

f(p)F a
µν(x)

(

pνpρ

(p · D)2

)

ab

F b µ
ρ (x)

= −g2

2

∫

x

∫

p

f(p)Wµ(x, p̂)Wµ(x, p̂)

For example, from this we can obtain the anisotropic 3-gluon vertex

Γµνλ(k, q, r) =
g2

2

∫

p

∂f(p)

∂pβ
p̂µp̂ν p̂λ

(

rβ

p̂·q p̂·r − kβ

p̂·k p̂·q

)
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Real-Time Lattice Simulation

Numerically solve the equations of motion resulting from the HL
effective action on a space + velocity lattice.

jµ[A] = −g2

∫

p

1

2|p| pµ ∂f(p)

∂pβ
W β(x;v)

with
[v · D(A)]Wβ(x;v) = Fβγ(A)vγ

and vµ = pµ/|p| = (1,v).

This has to be solved with

Dµ(A)Fµν = jν

where ν = 0 is the Gauss law constraint.
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~v-discretized equations of motion

Recall,

jν [A] = −g2

∫

p

1

2|p| pν ∂f(p)

∂pβ
W β(x;v)

A closed set of gauge-covariant equations is obtained when the
angular integral over p̂ is discretized.

The full HL dynamics is then approximated by the following set of
equations

[v · D(A)]Wv = (avF 0µ + bvF zµ)vµ

Dµ(A)Fµν = jν =
1

N
∑

v

vνWv

which can be systematically improved by increasing N .
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Hard-loop results – ξ = 10 – Weak Anisotropy
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A. Rebhan, P. Romatschke, M. Strickland, hep-ph/0505261
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Hard-loop results – Nonabelian cascade – ξ = 10

“Kolmogorov turbulence”

P. Arnold and G. Moore, hep-ph/0509206; hep-ph/0509226.
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Larger Anisotropies - ξ = 100
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Colored-Particle-in-Cell Simulations (CPIC)

Hard-loop approximation strictly only applies when we ignore the
back-reaction of the particles on the background field.

What happens when one relaxes this assumption? Let’s go back to the
transport equations and try to solve without linearization. Recall the
Vlasov equation

pµ[∂µ − gqaF a
µν∂

ν
p − gfabcA

b
µqc∂qa ]f(x, p, q) = 0

The Vlasov equation is coupled self-consistently to the Yang-Mills
equation for the soft gluon fields,

DµFµν = Jν = g

∫

d3p

(2π)3
dq q vνf(t,x,p, q)

A. Dumitru, Y. Nara, and MS, hep-ph/0604149
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CPIC - Wong-Yang-Mills equations

Can be solved numerically by replacing the continuous single-particle
distribution f(x,p, q) by a large number of test particles:

f(x,p, q) =
1

Ntest

∑

i

δ(x − xi(t)) (2π)3δ(p − pi(t)) δ(qa − qa
i (t))

where xi(t), pi(t) and qa
i (t) are the coordinates, momentum, and

charge of an individual test particle.

dxi

dt
= vi

dpi

dt
= g qa

i (Ea + vi × Ba)

dqi

dt
= ig vµ

i [Aµ,qi]

Ja ν =
g

Ntest

∑

i

qa
i vν δ(x − xi(t))
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CPIC - Point Particle Method

Cartoon picture of a point-like colored test-particle crossing a cell boundary.

Unfortunately for a stable 3d particle-in-cell tens of thousands of
pointlike test-particles per cell are required! This makes this method
difficult (if not impossible) to implement numerically.

Need a better method . . .
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CPIC - Smeared color particles

Cartoon picture of “smeared” colored test-particle crossing a cell boundary.

With this method, convergent results are achieved with as few 20
smeared test-particles per cell!
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CPIC - Highly anisotropic initial particle distribution
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Saturated energy density increases as continuum limit is approached!
Final field configurations are isotropic.
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CPIC - Ultraviolet Avalanche
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Cycle of isotropization? - Initialize field modes
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Cycle of isotropization? - Unstable modes grow
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Cycle of isotropization? - Prepare for avalanche
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Cycle of isotropization? - After avalanche
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Cycle of isotropization? - Reshuffle and play again!

L
o

g
(f

)

k
Λ field->particle

Michael Strickland – FIAS – ISMD 2006 – 6 September 2006 – p. 31/40



Cycle of isotropization? - Unstable modes grow
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Cycle of isotropization? - Prepare for avalanche
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Cycle of isotropization? - After avalanche
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Cycle of isotropization? - Reshuffle and play again!
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Other things to note
• Instability is also observed in classical CGC simulations which

include longitudinal momentum space fluctuations → CGC is
unstable! [P. Romatschke, R. Venugopalan, hep-ph/0605045]

• It is possible to solve the transport equations in an expanding
system in order find exactly where the expansion and instability
growth rate balance. [A. Rebhan and P. Romatschke, hep-ph/0605064]

• Anisotropy observables:
◦ Jet shapes in the φ−η plane. [P. Romatschke and M. Strickland,

hep-ph/0309093; P. Romatschke, hep-ph/0607327]

◦ Rapidity dependence of medium photons. [B. Schenke and M.

Strickland, hep-ph/0606160 and forthcoming]

• A recent paper has shown that including all relevant perturbative
effects that the Kolmogorov scaling of a nonabelian ultraviolent
avalanche is k−1 which for a classical system is thermal. [A.H. Mueller,

A.I. Shoshi and S.M.H. Wong, hep-ph/0607136]
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Conclusions
• Anisotropic plasmas are qualitatively different than isotropic ones.

An entirely new phenomena associated with unstable modes
appears.

• For relatively weak anisotropies real-time lattice simulations
indicate that for non-abelian plasmas the soft unstable modes
“saturate” and the growth then becomes power-law rather than
exponential accompanied by cascade/avalance to UV.

• However, for larger anisotropies it appears that exponential field
growth can continue similar to an abelian plasma.

• IMPORTANT: Late time soft fields generated by non-abelian
instability are isotropic.

• Going beyond the hard-loop approximation by numerically solving
the Wong-Yang-Mills equations (CPIC) also shows rapid field
growth and an “ultraviolet avalanche”. Results suggest a kind of
isotropization “pump”.
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Backup #1 – The “ridge”
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Backup #2 – A note on time scales

• This picture strictly only holds at leading order in αs = g2/4π.

• Instability time scale: tinstability ∼ m−1
D,iso ∼ (

√
αsQs)

−1

• Collisional time scale: thard collisions ∼
(

α2
sQs

)−1

αs tcollisions/tinstability

0.01 1000
0.1 30
0.3 6

• Can include collisions in the Boltzmann-Vlasov equation and it has
been shown that for ξ>∼ 1 the instabilities persist even for
αs ∼ 0.2 − 0.4. [ B. Schenke, C. Greiner, and M. Thoma, and MS,
hep-ph/0603029 ]
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Backup #3 – Pretty picture
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