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Abstract This review discusses static properties of topological defects, such as line defects- 
disclinations and dislocations, point defects - hedgehogs (monopoles) and boo- 
jums; focal conic domains and tilt grain boundaries in basic types of liquid crys- 
tals: uniaxial and biaxial nematics, cholesterics and smectics. We present the 
most popular experimental techniques to study defects in soft matter, namely, 
polarizing microscopy and fluorescence confocal polarizing microscopy. The 
role of bounding surfaces and the so-called surface anchoring that lifts the de- 
generacy of the order parameter in stability of defects is discussed. Because of 
the surface anchoring, the equilibridm state of a bounded liquid crystal might 
contain topological defects. For example, nematic bubbles nucleating during the 
first-order phase transition from the isotropic melt, might contain point defects 
(hedgehogs and boojums) and disclination loops when their size is larger than 
the anchoring extrapolation length defined by the ratio of the Frank elastic con- 
stant of the director curvature and the (polar) anchoring coefficient. Depending 
on the strength of surface anchoring, an edge dislocation might be expelled from 
the system with ID positional order or be stabilized in the bulk. Furthermore, 
focal conic domains play the role of "surface anchoring facets" by providing the 
necessary orientation of the liquid crystal director at the smectic boundary. 

1 Introduction 
Liquid crystals are endowed with continuous symmetries and physical preva- 

lence of correlations of orientation over correlations of position and thus show 
rich and complex variety of topological defects. Defects in liquid crystals are 
of various dimensionalities, not only line defects, but also points, walls, and 
"configurations" (walls, topological solitons). In this review, we consider ba- 
sic properties (mainly static) of defects in the simplest types of liquid crystals, 
nematics and smectics, mostly in relationship to the experimental studies and 
effects that the bounding surfaces have on defects. The experimental tech- 
niques of regular polarizing microscopy and more recent fluorescent confocal 
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polarizing microscopy are outlined in order to help those who would like to ex- 
plore the word of liquid crystal defects experimentally. The discussion follows 
the textbook on soft matter physics [I] with an addition of some recent results. 
An interested reader is also referred to general reviews on liquid crystals [ 2 4 ]  
and defects in them [5, 6, I 1 ,  121. 

Liquid crystals are made of strongly anisometric molecules, either elongated 
(calamitic molecules) or disk-like (discotic molecules). As a rule, the central 
part of mesogenic molecules is rigid (phenyl groups) and the outer part flex- 
ible (aliphatic chains). This double character explains the existence of steric 
interactions (between rod-like or disk-like cores of the molecules) yielding ori- 
entational order and the fluidity of the liquid crystalline phases. Upon heating, 
many substances made of strongly anisometric molecules, exhibit the follow- 
ing phase sequence: solid crystal with a long-range orientational and posi- 
tional order@liquid crystal (or mesophase) with a long-range orientational or- 
der and partial or no positional order @isotropic fluid with no orientational 
nor positional long-range order. There are four basic types of liquid crys- 
talline phases, classified according to the dimensionality of the translational 
correlations of building units: nematic (no translational correlations), smec- 
tic (1D correlations), columnar (2D correlations), and various 3D-correlated 
structures, such as cubic phases. 

Uniaxial nematics, noted UN, are optically uniaxial fluid phases. The unit 
vector along the optic axis is called the director n, n2 = 1; it indicates the aver- 
age orientation of the molecular axes. Even when the building units are polar, 
molecular flip-flops and head-to-head overlapping establish centrosymmetric 
(average) arrangement in the nematic bulk. Thus, n and -n are equivalent no- 
tations. In biaxial nematics (BN), the symmetry point group is one of a prism. 
A BN phase is characterized by three directors, n, 1, and m = n x 1, such 
that n = -n, 1 = -1, and m = -m. Both LTN and BN phases are fluid: the 
centers of gravity of the molecules are not correlated. 

When the building block (molecule or aggregate) is chiral, i.e., not equal to 
its mirror image, the nematic phase might show helicoidal structure. It is then 
called a cholesteric phase N*. A rotation by an angle a about the cholesteric 
axis is equivalent to a translation pal2.rr; p is the pitch of the cholesteric helix, 
and it is twice the periodicity along the axis. An N* phase can be character- 
ized by three directors: n along the local molecular axes, t along the axis of 
helicity (which is also the optic axis if the pitch is much smaller than the light 
wavelength), and m = n x t. Both BN and N* phases are liquid phases (no 
correlations in molecular positions). 

Smectics are layered phases with quasi-long-range 1D translational order of 
centers of molecules in a direction normal to the layers. This positional order 
is not exactly the long-range order as in normal 3D crystals: As shown by Lan- 
dau and Peierls, the fluctuative displacements of layers in 1D lattice diverge 
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logarithmically with the linear size of the sample. However, the effect is no- 
ticeable only on scales of 1 km and more [I]; typical samples are thinner: e.g., 
liquid crystal displays use cells of thickness 10 prn or even less. In smectic 
A (SmA), the molecules within the layers show fluid-like arrangement, with 
no long-range in-plane positional order; it is a uniaxial medium with the optic 
axis and n perpendicular to the layers. Other types of smectics show in-plane 
order; we do not consider them here. 

2. Experimental observations of LC structures 
Probing liquid crystals with light historically greatly contributed to our un- 

derstanding of their structural properties, including defects. Below we consider 
basic principles of two techniques used to image defects in liquid crystals: the 
classic technique of polarizing microscopy [13, 11 and relatively new technique 
of fluorescence confocal polarizing microscopy. 

2.1 Polarizing Microscopy of Liquid Crystals 
Consider a UN slab sandwiched between two glass plates and placed be- 

tween two crossed polarizers. The director n is in plane of the slab (Fig. 1 ) and 
depends on the in-plane coordinates (x,'y). The light beam impinges normally 
on the cell, along the axis z. A polarizer placed between the source of light and 
the sample makes the impinging light linearly polarized. In the nematic, the 
linearly polarized wave of amplitude A, and intensity I. = splits into the 
ordinary and extraordinary waves with mutually perpendicular polarizations 
and amplitudes A sin ,L? and A cos ,L?, respectively; ,L? (x, y) is the angle between 
the local n (x, y) and the polarization P of incident light. The vibration of the 
electric vectors at the point of entry are in phase. However, the two waves take 
different times, nod/c and n,d/c, respectively, to pass through the slab. Here 
no and n, are the ordinary and extraordinary indices of refraction, d is the cell 
thickness and c is the speed of light in vacuum. At the exit point, the elec- 
tric vibrations A sin ,L? cos w t  - z n o d )  and A cos ,L? cos (w t  - %n,d gain ( ) 
a phase shift A 0  = (no - n,). where A. is the wavelength in vacuum. 
The projections of these two vibrations onto the polarization direction of the 
analyzer behind the sample are of the same frequency and occur along the same 
directions. The analyzer thus transforms the pattern of (x, y)-dependent phase 
difference into the pattern of transmitted light intensity, that is easy to calculate 
from the consideration above: 

I = I. sin2 2,L? sin2 - (n, - no)] [ 1: 



The last formula refers to the case when n is perpendicular to the axis z.  If 
n makes an angle 8 ( z )  with the axis z ,  then 

Equations (1,2) represent only a rough approximation to the problem of light 
propagation in a birefringent medium. In general case of 3D distortions, one 
has to take into account that the extraordinary wave in the medium deviates 
from a straight line; one of the consequences is that a disclination line might 
create a "shadow," a region in which the extraordinary light does not enter [I]; 
such a disclination would appear to have a dark core much wider than the ac- 
tual core. Nevertheless, Eqs. (1,2) are useful in understanding the LC textures. 
First, note that the phase shift and thus I depend on Xo. As a result, when a thin 
sample is illuminated with a white light, it would show a colorful texture. The 
interference colors are especially pronounced when (n, - no) d m ( 1  t 3) Xo. 
Second, the director tilt greatly changes the phase shift. When 0 = 0 (the so- 
called homeotropic orientation, n \ \ ~ ) ,  the sample looks dark, I = 0. Third, 
if (81 > 0 but p = 0,&7r/2, ..., one might still observe dark textures, I = 0, 
even in nonmonochromatic light. In a sample with in-plane director distortions 
n (2, y), wherever n (or its horizontal projection) is parallel or perpendicular 
to the polarizer, the propagating mode is either pure extraordinary or pure or- 
dinary and the corresponding region of the texture appears dark. Figure 2 is an 
example of such a texture with dark "brushes of extinction." Points at which 
the brushes converge are centers of topological defects (so-called boojums in 
this case). The texture with defects and dark brushes is called the Schlieren 
texture. 

A polarizing microscopy image bears only a two-dimensional (2D) infor- 
mation, integrating the 3D pattern of optical birefringence over the path of 
light, see Eq.(2). The recently developed Fluorescence Confocal Polarizing 
Microscopy (FCPM) [14, 151 allows one to visualize the whole 3D director 
structure. 

FCPM is a particluar mode of the confocal microscopy (CM). In CM, the 
sample region inspected at a time is a small (submicron) voxel (=3D pixel) 
[16]. Signals from nearby voxels are suppressed by a special (confocal) op- 
tical design with a pinhole in the image space. The point source of light, the 
inspected voxel and the pinhole are confocal. Light coming from the neigh- 
borhood of the inspected voxel is blocked from reaching the detector [16]. To 
obtain a 3D image of the whole sample, the tightly focused laser beam scans 
the specimen voxel by voxel. Using a computer, the data that describe an essen- 
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Figure I .  Light transmission through a nematic slab viewed between two crossed polarizers. 

Figure 2. Schlieren texture of a uniaxial nematic LC under a polarizing microscope; nematic 
film (material: pentylcyanobiphenyl) of a thickness approximately I micron placed onto a glyc- 
erin substrate. Arrows indicate the core regions of the surface defects-boojums with topological 
charges k= - 1 and k=+l . 

tially 3D pattern, can be presented as a horizontal or vertical "cross-sections" 
of the sample. 



FCPM adds two distinctive features to CM: ( I )  the liquid crystal under ex- 
amination is doped with an anisometric fluorescent probe that is aligned by the 
host medium; (2) observation is performed in polarized (usually linearly) light 
[14, 151. A simple view of how the FCPM visualizes a 3D director field in a 
nematic sample is as follows. 

Imagine a UN composed of elongated molecules and doped with anisomet- 
ric fluorescent dye molecules. The transition dipoles of both excitation and 
fluorescence align along n. The linearly polarized incident light causes flu- 
orescence of the dye. The efficiency of light absorption is determined by the 
angle between the polarization P of incident light and the direction of the 
absorption transition dipole of the dye molecule, i.e., n. The excited dye fluo- 
resces. The intensity of light detected through another polarizer (or the same 
one, in case of the reflective mode) depends on the angle between the polar- 
izer and the emission transition dipole of the dye. In many cases, the resulting 
intensity is a steep function of the angle a between n and P: [14, 151 

Note that in the polarizing microscopy, two complementary director fields 
that differ everywhere by an angle /3 = n/2, are not resolved (a quaterplate 
or a quarz plate is needed in the optical pathway of the microscope). Such 
a problem does not exist in FCPM; however, one should be aware that the 
angle a defines a cone of directions; the degeneracy can be lifted by making 
observations with different settings of P. 

Apparently, the best resolution of the reflective mode FCPM, close to 0.5 
pm, can be obtained in the vicinity of the entry plane. As the penetration 
inside the birefringent volume increases, the resolution worsens because of the 
spatial defocusing of the ordinary and extraordinary modes. This defocusing 
can be estimated roughly as [14, 151 Azani, - gAnz/nave, where nave is the 
average refractive index, z is the depth of scanning (penetration), and g is a co- 
efficient of the order of unity (dependent on the sample orientation, objective, 
and the director field). For a 20pm depth of focusing and An/nave - 0.05, 
the defocusing is of the order of 1 pm; the lower the birefringence An  of the 
liquid crystal, the better. Figure 3 shows the basic idea of FCPM technique, 
while Fig.4 demponstrates a vertical cross-section of a cholesteric liquid crys- 
tal sample, in which an edge dislocation is attracted to the top substrate [17]. 
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I - cos4a= 
maximum signal minimum signal 

cos2 axcos2 a 

Figure 3. Principle of visualizing 3D director configuration in FCPM. The fluorescent dye 
molecules (ellipsoids) are aligned by the director. Polarized probing beam excites the dye 
molecules and cause fluorescence. The efficiency of excitation depends on the angle between 
the transition dipole of dye molecule (double-headed arrows) and polarization of probing beam. 

Figure 4. Fluorescence confocal polarizing microscope images of the edge dislocation in a 
cholesteric liquid crystal bulk (a) climbing towards the upper plate (b,c) with a weak surface 
anchoring. Part (d) shows structure of an unperturbed cholesteric liquid crystal with helicoidal 
twist of the director (straight lines). 

3. Defects in nematics 

3.1 Topological classification 
The language of homotopy groups [18, 191 is the natural way to classify 

topological defects in media such as nematic LCs, to associate the character of 
ordering of a medium and the types of defects arising in it, to find the laws of 



decay, merger and crossing of defects, to trace out their behavior during phase 
transitions, etc. The key concept is that of a topological invariant, or topologi- 
cal charge, inherent in every defect. Stability of the defect is guaranteed by the 
conservation of its charge. Homotopy classification of defects implies three 
steps. 

First, one defines the order parameter (OP) of the system; its amplitude and 
phase. For example, director can be considered as the phase of the nematic 
order parameter; it is also called a degeneracy parameter as reorientations of 
n (r) as the whole does not change the thermodynamical potentials of the sys- 
tem. 

Second, one determines the OP (or degeneracy) space R, i.e., the manifold 
of all possible values of the OP that do not alter the thermodynamical poten- 
tials of the system. In the uniaxial nematic R is a sphere S2/Z2 with pairs of 
diametrically opposite points being identical. Every point of S2/Z2 represents 
a particular orientation of n. Since n - -n, any two diametrically opposite 
points at S2/Z2 describe the same state. 

The function n (r) maps the points of the nematic volume into s2/Z2. The 
mappings of interest are those of i-dimensional 'spheres' enclosing defects. A 
line defect is enclosed by a loop, i = 1; a point defect is enclosed by a sphere, 
i = 2 , etc. c 

Third, one defines the homotopy groups Ti (R). The elements of these 
groups are mappings of i-dimensional spheres enclosing the defect in real 
space into the OP space. To classify the defects of dimensionality t' in a t- 
dimensional medium, one has to know the homotopy group with i = t - t' - 1. 

On the one hand, each element of 7ri (R) corresponds to a class of topo- 
logically stable defects; all these defects are equivalent to one another under 
continuous deformations. On the other hand, the elements of homotopy groups 
are topological charges of the defects. The defect-free state corresponds to a 
unit element of the homotopy group and to zero topological charge. The results 
of the homotopy classification for UN and BN are as follows. 

UN. There are no stable walls, as no (S2/z2) = 0. There is one class 
of topologically stable line defects (disclinations), as 7r1 (S2/Z2) = Z2 = 
(0,112). The addition rules for defect combinations are 112 + 112 = 0, 112 + 
0 = 112; the only stable disclinations are those that correspond to the element 
112. 

It is customary to characterize the disclinations with a special integer or 
semi-integer number k called the strength. It shows how many times the di- 
rector rotates by 27r when one circumnavigates the defect core once. The sign 
of k indicates the director of rotation; it has no topological relevance, as the 
states with opposite signs are topologically equivalent. The difference between 
stable lines of, say, k = 112 and k =. -112, is energetical rather than topo- 
logical, as they can be continuously transformed one into another. Besides, 
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(b) 

thin 

(c) 

thick 

Figure 5. Singular (thin, half-integer k) and nonsingular (thick, integer k) disclination lines 
and point defect-hedgehog along the non-singular disclination as seen in the bulk of a nematic 
slab under the polarizing microscope (a). Part (b) and (c) show the director congifurations 
around thin and thick disclinations, respectively. 

all lines with Jkl = 112 + n, where n is an integer, are topologically equiva- 
lent to each other, as are the lines with Jk( = n. Energetically, as we shall see 
later, smaller values of n are preferrable. The stable IkJ = 112 lines are often 
referred to as "thin" lines, while JkJ = 1 as "thick" lines. The terminology is 
explained by the appearance of the defect cores under the microscope, Fig.5: 
the cores of lkl = 112 lines are singular while JkJ = 1 defects are non-singular. 

There are stable point defects, the so-called hedgehogs, as 7r2 (,S2/Z2) = 
Z = (0, f 1, f 2, ...). As n = -n, each point defect can be equally labeled 
by the topological invariant N and - N [19]: 

where u and v are the coordinates specified on the sphere S2 surrounding the 
point defect. 

Besides hedgehogs, there is another type of point defects in the nematic 
phase, so-called boojums, Fig.6,7. Boojums, in contrast to hedgehogs, can 
exist only at the boundary of the medium [20], Fig.2,6,7. The core of the 
boodjum is located at the boundary or at some distance from it (a virtual 
core), if the surface anchoring strength is finite (which is always the case in 
practice), Fig.6. In addition to the integer N, boojums in a uniaxial nematic 
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Figure 6. Point defect-hedgehog in the UN bulk (a) and point defect-boojum at the UN 
surface (b); pairs of boojums at the opposite sides of the flat nematic sample (c,d); their cores 
are located at the bounding plates in the case of infinitely strong tangential anchoring (c), or 
at some distance A-K/W from the plate for a dnite anchoring coefficent W; K is the typical 
elastic curvature (Frank) constant of the UN. 

can be characterized by a 'two-dimensional' topological charge k of the unit 
vector field T= n - v (n . v) projected by the director onto the boundary: 

k = & S S ( T ~ $  - T ~ % )  ds = 0 , 5 1 , 1 2 ,  .., where s is the natural pa- 
rameter defined along the loop at the bounding interface enclosing the defect 
core; similarly to the case of disclinations, k shows how many times T rotates 
by 2n when one circumnavigates the defect once [21]. Boojums are character- 
ized by elements of the relative homotopic group ~2 (S2/.Z2, Rs), where R, 
is the degeneracy space of the system at the surface that depends on the type 
of director orientation there: Rs = 0 when the equilibrium angle 60 between 
n and the normal v to it is 0; R, = S1 when 0 < O0 < n/2, and Rs = S1 /.Z2 
when O0 = n/2 [21]. The phenomenon that sets an equilibrium value of O0 
at the surface of a liquid crystal is called anchoring; it stems from the broken 
symmetry of molecular interactions near an interface; we will return to this 
phenomenon later on. 

In a nematic film confined between two glass plates, with the director being 
in the plane of the sample, O0 = n/2, one can observe two types of apparently 
point defects: those with k = 5112 that actually are the ends of line disclina- 
tions connecting the opposite glass plates, and the true point defects-boojums 
with k = f 1, Fig.7. In practice, to distinguish the two, it suffices to shift 
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Figure 7. A polarizing-microscope texture of a nematic slab (a) reveals two types of appar- 
ently point-like defects at the bpounding plates: the centers with two dark brushes and thus 
k = i l l 2  and the centers with four dark brushes and thus k = i 1 .  Shifting of the two glass 
plates with respect to each other (b) shows that the two types of surface point-like defects are 
in fact very different: k = i l l 2  defects represent the ends (black arrows) of the line defects- 
disclination connecting the two glass plates and k = i 1  centers represent the true surface point 
defects-boojums (white arrows); when separated, they leave a non-singular fuzzy trace in the 
nematic bulk. 

the plates of the cell with respect to each other, Fig.7b: the separated boojums 
leaves a non-singular trace between them, while the ends of disclination will 
appear connected by the defect line. 

BN. In the biaxial nematics, there are no hedgehogs, and there are five topo- 
logical classes of disclinations [22], .rrl ( S 0 ( 3 ) / D 2 )  = Q, where Q is the 
group of quaternion units. Defects k = f 1 are topologically stable [22]: the 
escape does not remove the singular core, as upon reorientation of one of the 
directors n, 1, and m into an escaped configuration, another two restore the 
singularity. However, if two out of the three directors are associated with small 
Frank constants (which should occur in the vicinity of the N-BN traqsition), 
the escape of the "hardest" of the tree directors is possible [23]. Some pairs 
of disclinations cannot cross each other without creation of a third disclination 
that joins the original pair [22, 11. 

3.2 Disclination textures 
When a thick UN sample is viewed under the microscope, the disclinations 

are seen as thin and thick threads, Fig.5. Thin threads strongly scatter light 
and show up as sharp lines. These are true topologically stable disclinations, 
along which the nematic symmetry of rotation is broken. Thick threads are 
line defects only in appearance; they are not singular disclinations. The di- 
rector is smoothly curved and well defined everywhere; it can be, at least in 



principle, transformed into a uniform state; the obstacles might be imposed by 
the conditions at the walls of the sample or by other defects. 

In thin UN samples (1-50 pm),  the threads are often perpendicular to the 
bounding plates, as in Fig.7a. Under a polarizing microscope, the threads show 
up as centers with emanating dark brushes, giving rise to the Schlieren texture, 
Fig.2 and Fig.7. The dark brushes display the areas where n is either in the 
plane of polarization of light or in the perpendicular plane. There are usually 
two types of centers: with two and four dark brushes, Fig.7. They correspond 
to the thin and thick threads, respectively. 

The centers with two dark bands have a sharp (singular) core, insofar as can 
be seen, of sub-micrometer dimensions and correspond to the ends of singular 
stable disclinations, Fig.7b. The director rotates by 7-r when one goes around 
such a center. Presence of centers with two brushes signals that n is paral- 
lel to the bounding plates: the in-plane rotation brings the director n into its 
equivalent state -n. A small change in boundary conditions leads to symme- 
try breaking: if the angle between n and the substrate is different from zero, 
then the projection of the director n, onto the bounding plates does not satisfy 
the condition n, = -n,. The centers with four brushes in Fig.2,7 correspond 
to isolated point defects, boojums. One can observe the difference between 
the two-brushes and four brushes centers'by gently shifting one of the bound- 
ing plates, Fig.7b. On rare occasions, centers with number of brushes higher 
than four are encountered. These observations signal some peculiarity of the 
nematic material [24] or of the boundary conditions [25]. 

Equations (1,2) allow one to relate the number k of director rotation by 27-r 
around the defect core, to the number B of brushes emanating from the core in 
the Schlieren texture, ( k J  = B/4. Note, however, that the last equality is valid 
only when the rate of director rotation around the core does not change sign. In 
some textures, especially when the centers show more than four brushes, this 
restriction is not satisfied and there is no simple relationship between J k (  and 
B, see [25] for details. 

3.3 Elasticity 
In the so-called Frank-Oseen model of nematic and cholesteric LCs, the 

free energy (volume) density of elastic distortions fel is written as an invariant 
quadratic form of the first spatial derivatives of n [I]: 

K33 +-- [n x curlnI2 - K2q div (n-divn + n x curln) , 
2 (5) 

where KI1, K22, and K33 are the "bulk" Frank elastic constants for splay, 
twist, and bend deformations, respectively, Kc is the chiral coefficient that 
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determines the pitch of cholesteric LC: p = ~ T K ~ ~ / K , - ;  p + 00 in the nematic 
LC. The divergence (often called saddle-splay or "surface-like") elastic K24 
term can be reduced to the surface integral but has to be taken into account 
when the topology of director distribution changes; note that here we neglect 
another divergence term K13 div (nadivn) by assuming KI3 = 0. 

The divergence nature of the K24 term allows one to transform the volume 
integral 

J ~ 2 4  div (n.divn + n x cur1n)dV = K24 V. (n-divn + n x curln)dA, J J 
(6) 

at least away from the interfaces and defect cores, when the modulus K24 is 
constant. However, whatever the way of integration of this term, the resulting 
energy scales similarly to the elastic energy of the regular "bulk" terms, usually 
linearly with the system size. The difference between K24 and other terms is 
more subtle: the divergence term does not enter the Euler-Lagrange equations 
for equilibrium in the bulk, but it influences the equilibrium director through 
the boundary conditions (which might be imposed also at the core of defects). 
It should be taken into consideration when the topology of the defect states 
changes, as, for example, in the hedgehog-loop or radial-hyperbolic hedgehog 
transformations, see below. ( 

Frank in 1958 [26] considered the equilibrium defects configurations corre- 
sponding to the free energy density above. He assumed that (I) the director 
field is twistless and that it is everywhere parpendicular to the axis of line de- 
fet (the so-called 'planar' disclinations), n = [cos $, sin$, 01, where cp is the 
function of the Cartesian coordinates, $(x, y), or polar coordinates, $(r, cp); 
(2) the bulk elastic constants are equal, KI1 = Kgg = K.  Note that in planar 
case, the K24-term in the line's energy is zero. The Euler-Lagrange equation 
in the Frank model is the same as the 2D Laplace equation of electrostatics, 
A$ = 0, which writes in polar coordinates as 

One of the classes of singular solutions is $ = Acp + B(r,  cp), where A is 
a constant, and B(r ,  cp) is the harmonic regular function at the origin. From 
the condition J, d$ = 27rIc, one finds A = Ic, where Ic = 0,112, f 1, ... is the 
disclination "strength." The elastic energy per unit length 

is logarithmically divergent: 



where R is the characteristic size of the system, rc  and Fc are respectively the 
radius and the energy of the disclination core, a region in which the distortions 
are too strong to be described by a phenomenological theory. The energy of 
two parallel planar disclinations separated by a distance L, rc  < < L < < R, 
is [I] 

The Frank theory does not distinguish lines of integer and semi-integer k ,  
except for the fact that the lines with k = f 1 tend to split into pairs of lines 
k = f 112, which often reduces the energy, as Fll - ~ , ' k ~ .  Anisimov and 
Dzyaloshinskii in 1972 [27] showed that, in additional to planar lines, non- 
planar, or 'bulk' stable disclinations with k = f 112 can exist, in which the 
director does not lie in a single plane. 

The lines of integer k ,  as predicted by the homotopy theory, are fundamen- 
tally unstable. Imagine a circular cylinder with normal orientation of at the 
boundaries, Fig.8a. The planar disclination would have a radial-like director 
field normal to the axis of the cylinder, k = 1. However, the director can be re- 
oriented along the axis. This 'escape into the third dimension' is energetically 
favorable, since the energy of the escaped configuration is only Fll = 371K. 
[28]; 1291. When opposite directions of the 'escape' meet, a point defect- 
hedgehog is formed, Fig.8~. The tendency to escape is preserved even when 
the disclination with integer k is formed between two flat plates that set tan- 
gential director orientation, as in Fig.8, at least for the realistic values of the 
surface anchoring coefficient ( W - I O - ~  J / m 2 ,  see below) and thickness of the 
slab larger than I p m  [23]. The escape in a flat cell leaves two boojums, as 
shown in Fig.6c,d. Note that with typical w-~o-* J / m 2  and elastic constant 
K-10-l1 N, the characteristic anchoring length X = W / K  is relatively small, 
of the order of O.lpm, and one can assume that the core of the boojum is 
located closely to the bounding plate, see Fig.6d. 

Unlike point defects such as vacancies in solids, the topological point de- 
fects in uniaxial nematics cause disturbances over the whole volume. The cur- 
vature energy of the point defect is proportional to the size of the system. For 
example, for a radial hedgehog n = ( x ,  y ,  z )  / J x 2  + y2 + z2 ,  

and for a hyperbolic one, n = ( - x ,  - y ,  z )  / J x 2  + y2 + z2 ,  

Stability of the particular defect configuration might depend on the values of 
the elastic constants. For example, the point defect might spread into a topo- 
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Figure 8. Disclination k = 1 in a circular cylinder with normal boundary condition (a) is 
unstable against the escape into third dimension (b); the effects might lead to formation of point 
defects - hedgegogs (c). 

logically equivalent disclination of Ic = f l/?, [30], Fig.9. Note that, unlike in 
the case of planar disclinations, the divergence Ka4-term does contribute to the 
energies of the hedgehogs (see the last two equations) and loops. For example, 
the K24-term contributes (-87rK24R) to the energy of the radial hedgehog. If 
such a point defect transforms into a topologically equivalent circular loop 
withIc = 112, thenitsenergy is [31] 

where a is the radius of the ring, fcl = FC1('/K, Fcl is the loop core energy, 
< is the nematic coherence length. Here, to elucidate the role of K24, we 
assume that the two relevant bulk elastic constants are equal, Kll = K33 = 
K .  Minimization yields the equilibrium value of the loop radius that strongly 
depends on K24 [3 11 : 

4K24 a* = 2rC (4 - 4 ~ 2 4 1  K - 4fCl /R) = 30( exp [- . (14) 

In UN, the disclinations can always pass through each other. They can ex- 
change ends (reconnection) or not, depending on the original geometry, as doc- 
umented experimentally [32], see Fig. 10. In BN, some pairs of disclinations 
produce a third line when passing through each other [22]. 



Figure 9. A point defect - hedgehog transforms into a disclination loop. 

Figure 10. (a) Two disclinations of the opposite sign with ends fixed at two surfaces recom- 
bine and disconnect in the horizontal plane, shortening the total length of the defects pair. (b) 
Two disclinations of the same sign with ends fixed at two surfaces recombine and disconnect in 
the vertical plane, leaving the total length practically the same. 

3.4 Surface anchoring phenomena; Equilibrium point 
defects in nematic droplets 

When left intact, textures with defects in flat samples relax into a more or 
less uniform state. Disclinations with positive and negative k find each other, 
reconnect and annihilate, thus reducing the total length of disclinations web. 
There are, however, situations when the equilibrium state requires topological 
defects. The defects are brought about by the effects of surface anchoring. 
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Figure I! .  Because of the difference in surface anchoring conditions, nematic (UN) droplets 
freely suspended in the glycerin doped with lecithin (a) and in pure glycerin (b) exibit different 
director structures. The structures contain equilibrium topological defects, either a pint defect- 
hedgehog in the center of the droplet (a) or a pair of surface point defects-boojums at the poles 
(b). The easy axis is normal to the interface in (a) and tangential to the interface in (b). Note that 
the droplets with tangential anchoring (b) have a twisted director structure and are thus optically 
active; the effect is caused by the smallness of the twist elastic constant as compared to the bend 
and splay elastic constants. 

Broken symmetry of molecular interactions at the boundary lifts the degen- 
eracy of director orientation in space and sets some weel-defined direction(s) 
of n, called the "easy axis (axes)." The easy axis might be perpendicular to 
the surface ("homeotropic alignment"), tilted, tangential, uniaxial tangential 
(called also "planar"), etc. An easy axis can be created by the geometry of the 
system even when the bounding plates are "isotropic". For example, imagine 
a tangentially anchored UN confined between two plates. Any direction of n, 
as long as it is parallel to the plates, would correspond to the equilibrium state. 
However, if the plates are tilted with respect to each other, then the equilibrium 
orientation would be along the thickness gradient; all other directions would 
imply director distortions [33]. The phenomenon, called "geometrical anchor- 
ing," might lead to the appearance of twisted director configurations [33]. 

Nematic droplets suspended in an isotropic matrix such as glycerin, water, 
polymer, etc. [21, 341, or nucleating during the first-order isotropic-nematic 
phase transition, and inverted systems, such as water droplets in a nematic ma- 
trix [35] are the most evident examples in which the surface anchoring might 
result in equilibrium defect structures, Fig. 1 1. 

The equilibrium structure in a bounded volume is found by minimizing the 
total free energy functional F, which is a sum of the elastic (we consider 
field-free situations) and the surface energies. The later is comprised of the 
isotropic (surface tension) and anisotropic (surface anchoring) terms. Usually, 
the surface tension coefficient a- (lop2 - lop3) J/m2 is much large than its 



anchoring counterpart W -  - ~ / m ~ ,  and a liquid crystal droplet 
suspended in a suitable matrix (say, glycerin or the melt of the liquid crystal 
itself in the biphasic region; the liquid crystal and the matrix have a similar 
densities) adopts a spherical shape. The anchoring coefficient W is the mea- 
sure of work one needs to spend to deviate the director from the easy axis by a 
certain angle, say, 7r/2 in the so-called Rapini-Papoular model; the area of the 
interface is fixed. Experimentally, it can be determined by measuring director 
reorientation under the action of an external field [36]. 

The minimization problem for a body with a fixed shape involves not only 
the elastic energy St, feldV functional, but also the surface anchoring energy 
Ssfs dS: 

If the liquid crystal is adjacent to an isotropic medium and molecular inter- 
actions at the interface set strictly normal or tangential boundary conditions, 
one often uses the so-called Rapini-Papoular anchoring potential [37]: 

where v is the unit normal to the liquid crystal-ambient medium interface; the 
anchoring coefficient W > 0 for tangential boundary conditions and W < 0 
for normal boundary conditions. More generally, 

where Wtj is the symmetrical anchoring tensor, that describes the easy axis as 
well as polar and azimuthal anchoring coefficients [38]. 

Consider a spherical nematic droplet of a radius R. The isotropic surface en- 
ergy scales as a ~ ~ ,  the surface anchoring energy scales as 1 W  I R2 and the elas- 
tic energy as KR; here K- 10-l1 N is some averaged Frank constant. Prac- 
tically any macroscopic droplet is spherical, as K/a- (1  - 10) nm. Small 
droplets with R < < K/I W I avoid spatial variations of n at the expense of vi- 
olated boundary conditions. In contrast, large droplets, R >> K / J  W J ,  satisfy 
boundary conditions by aligning n along the preferred direction(s) at the sur- 
face. In a spherical droplet, the result is the distorted director in the bulk, for 
example, a radial point defect-hedgehog when the surface orientation is nor- 
mal, Fig. 1 1 a. Note that the characteristic radius R, = K/ (  W ( is macroscopic 
(0.1-10 microns), as (WJ-  - ~ / m ~ .  

Point defects (both hedgehogs and boojums) in large systems such as ne- 
matic droplets with R > > K/ ( W 1, must satisfy restrictions 
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The first relationship is the Poincare theorem: the sum of the indices of the 
vector field defined at a surface is equal to the Euler characteristic E of this 
surface. For a sphere E=2 and for a torus E=O. The second equality in 
Eq.(18) is a consequence of the Gauss theorem and the fact that defects such 
as hedgehogs can exist not only in the bulk but at the surface as well [21]. 

The simplest example of the equilibrium defect structures can be easily 
found in sufficiently large spherical UN droplets freely suspended in a suit- 
able isotropic matrix: a spherical droplet with perpendicular anchoring shows 
a single hedgehog at the center, while a droplet with tangential director an- 
choring shows two boojums at the poles, Fig. 11. By changing the direction of 
the easy axis from normal to tangential (or vice versa), one can observe "topo- 
logical dymamics" of defects, in which a hedgehog is replaced by the pair of 
boojums; the process involves disclination loops, see [21]. Another interesting 
illustration of Eq.(18) are "Dirac monopole" structures that represent a combi- 
nation of a hedgehog and a disclination line emanating from the center of the 
point defect, and can be easily observed in liquid crystals of the smectic C [39] 
or cholesteric type. 

The conservation laws given by Eqs. (1'8) may influence the late stages of 
the first-order isotropic-to-nematic phase transition that occurs through nucle- 
ation of nematic droplets. The critical radius of nucleation is (see, for example, 
[I]) r, = 20-1 f ,  where u - 1 0 - ~  ~ / m ~  [7] is the surface tension coefficient for 
the isotropic-nematic interface, and f is the bulk energy density difference be- 
tween the isotropic and nematic phases. Estimating f ' A T A H / T N I ,  where 
A T  = T N I  - T is the depth of temperature quench and A H - ~ o ~ J / ~ ~  is the 
latent heat of transition [40], one finds r,-0.01 pm for deep quenches (tens of 
degerees), rC10.1 pm when the quench is a degree or so below the transition 
temperature T N I  and r  -+ oo when T + T N I .  The droplets grow by adding 
molecules from the isotropic matrix and by coalescence. At early stages of 
deep quench, small droplets are practically uniform; they might form defects 
upon coalescence according to the Kibble mechanism. However, as soon as 
the droplets grow above R, = K / J  W 1 , a more powerful deterministic source 
comes into play, namely, surface anchoring and the topological constraints con- 
sidered above. For the popular nematic material pentylcyanobiphenyl (5CB), 
the surface anchoring coefficient at the nematic-isotropic interface has been 
measured to be IWI % J / m 2  [7] while K % 2  x 10-l2 J / m 2  [8]. 
Therefore one might expect that the anchoring-induced production of defects 
becomes effective for R > R, = 2pm. This is indeed what happens, Fig. 12. 
Figure 12 shows nematic droplets growing from the isotropic melt (E7 mixture 
containing cyanobiphenyls, similar to 5CB): supramicron droplets clearly con- 



tain stable topological defects. Because of the surface anchoring that favors 
tilted conical director orientation, there are both point defects and disclina- 
tion loops; the corresponding director fields are described in details in Ref. 
[2 1 1. The anchoring mechanism is extremely effective, producing one discli- 
nation loop per each nematic droplet of the appropriate size in the case of 
Fig.12b. Interestingly, Bowick et al. [9], expanding on the earlier studies 
[lo], have discovered that the number of "strings" (disclinations) produced in 
the 5CB isotropic-nematic transition was about 0.6 per "bubble" (droplet). Al- 
though this number has been found to be in reasonable agreement with the 
Kibble mechanism [9], it might also signal a significant contribution of the an- 
choring mechanism. Really, as Fig.2b and 2c in Ref.[9] reveal, most of the 
droplets were at least 40 pm in diameter before the continuous nematic slab 
was formed. Therefore, the 5CB droplets should have satisfied the conditions 
for the anchoring-driven defect production (R > Rc = 2pm) and for the for- 
mation of boojums and loops (as the surface alignment is titled for 5CB [7]). 
The problem deserves further study, as the defect structure of droplets and pos- 
sible presence of boojums and loops was not addressed in Ref. [9] (instead, 
the appearance of monopoles-hedgehogs has been suggested). 

To summarize, the balance of Kibble and anchoring-driven defect produc- 
tion shown in Fig.12 during the isotropic-nematic phase transition is still an 
open problem. Clearly, it should strongly depend on the speed and depth of 
quenching; fast and deep quench that produces numerous sub-micron nuclei 
separated by submicron distances might mitigate the anchoring mechanism. 
On the other hand, slow quench might tell a story of anchoring-induced defect 
dynamics in growing droplets which is of interest on its own. These experi- 
ments are in progress. 

4. Defects in SmA and other Lamellar Systems 

4.1 Elasticity 
The order parameter of SmA phase includes a nematic contribution (coming 

from the normal to the layers) and a 1D solid contribution. The nematic "bulk 
part yields the same free energy as for UN (1,2), with no twist term, as in 
the system of layers, n.curln = 0; the solid part yields a compressibility, or 
B-term, viz. 

K11 K33 B 2  
fA = - (divn)' +- [nxcurln]'- K~~ div (nedivn + nxcurln)+- y , 

2 2 2 
(1 9) 

where do is the equilibrium repeat distance, d is the actual layer thickness 
measured along, y = (d - do) /do is the relative dilation, and B is the Young 
modulus for the 1D solid. 
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Figure 12. First-order isotropic-to-nematic phase transition in a nematic mixture E7 in a 
glass container of thickness 200 micron; biphasic region. Nematic nuclei-droplets show vari- 
ous defects such as boojums (black arrows) and disclination loops (white arrows) stabilized by 
surface anchoring at the nematic-isotropic interface. Parts (a,b) show the same sample; part (b) 
corresponds to the later stage of the phase transition as compared to part (a). 

K33 -& 1 - A 2  The ratio of K33 to B contributions is 9, where Xg3 = 

,,/- is some length of the order of do and r is some characteristic radius 
of deformation. For macroscopic r, K33 contribution, which is a deforma- 
tion associated with the layers compression, is negligible compared with the 
B-contribution, which is of the same nature. It is usually dropped, but we will 
see one example, in which K33 does appear to play a role, in the problem of 
cholesteric anchoring. 

In many situations of practical interest, the departures of layers from an ideal 
equilibrium flat configuration are small and the expression for the elastic free 
energy density can be simplified by introducing a single scalar variable u, that 
describes the layer displacement field: 

The ratio of the two elastic moduli defines an important length scale X = 

d m ,  called the "penetration length" . The correction term [- $ (g  ) 2] 

makes the compression term invariant with respect to uniform rotations. A 
uniform rotation of layers, say, by an angle 0 = g, should not change the 



energy. However, it changes the effective layer spacing measured along the 
fixed axis, do + do/  cos 8 .  The effective strain is do (1 - 1/ cos 8 )  / d o  x 
-02 /2 ,  hece the correction term. Note that this term makes the theory non- 
linear. 

The free energy density suitable to describe large bendings of layers and 
small dilations/compressions, is usually written in the form ( see, e.g., [I]) 

where x i s  the saddle-splay elastic constant , R1 and R2 are the principal radii 
of curvature. Note that for the director field n(r) defined as a unit normal to the 
layers, 

2 
divn = f - + - ; (dl i2) div (nadivn + nxcur ln)  = - 

R1 R2 
(22) 

Dimensional analysis suggests that for deformations at scales L much larger 
than the interlamellar spacing do,  the curvature contribution " K L  is much 

2 
smaller than the bulk contribution - B L!- K L (i) , as L > > do. Therefore, 
at L >> do, one can treat the lamellar medium as a system of equidistant (and 
thus parallel) layers with predominantly curvature distortions. 

Imagine now a confined volume of a lamellar phase. The layers are curved 
to satisfy the boundary conditions. As the layers tend to be parallel to each 
other, the centers of curvature form two focal 2D surfaces. The energy of the 
focal surfaces is large, -BXL2. An efficient way to reduce this energy is to 
reduce the dimensionality of the focal surfaces, by shrinking them into lines or 
points. Clearly, the focal lines and the corresponding system of layers adopt 
only a selected set of shapes. One of the most often met situations is when 
the focal lines are a pair of cofocal ellipse and hyperbola; the limiting case is 
a circle with a straight line passing through its center [I]. The lamellae fold 
around the defect pair preserving their equidistance everywhere, except at the 
cores of the defects. They have the shape of Dupin cyclides, i.e. surfaces 
whose lines of curvature are circles. The structure is called a focal conic 
domain (FCD), Fig.13. In Fig.13, the line M'M" represent one of the director 
lines; it connects the ellipse and the hyperbola; it is normal to all the layers 
it crosses. The layers of type "1" in Fig.l3a,b, have cusps at the ellipse, the 
layers of type "3" have cusps on the hyperbola, while the layers of type "2" are 
non-singular. 

A good model of the lamellar system is a cholesteric (Ch) phase, Fig.4d. 
Ch is formed by chiral nematogen molecules; molecular interactions lack in- 
version symmetry. The director is twisted into a uniaxial helix (although more 
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Figure 13. Focal conic domains based on a confocal ellipse-hyperbola pair. Surfaces corre- 
spond to equidistant layers. Parts (a,b) show the same FCD in the bulk viewed from different 
directions. Part (c) illustrates a FCD in a bounded sample with the elliptic base being on one of 
the plates. Note that within the base, the layers are perpendicular to the bottom plate; at the top 
plate, the layers are tilted. 

complex geometries, such as blue phases with "double twist" are also possi- 
ble). Spatial scale of background deformations, e.g., the pitch p of the helix, is 
normally much larger than the molecular size, as the interactions that break the 
inversion symmetry are weak. This feature makes Ch a very attractive lamellar 
medium to study defects: with p in the range of few microns, one can study 
defects in details using a standard microscopy or FCPM. 

Elastic properties (and thus defects) at short-range and long-range (as com- 
pared top) scales are different. The homotopy classification of defects is sim- 
ilar to that for biaxial nematics and predicts phenomena such as topological 
entanglement of disclinations and formation of non-singular soliton configura- 
tions [I]. However, periodic nature of director helix leads to a dual character 
of defects, as at large scales, one finds stable defects such as dislocations (that 
are often composed of disclination pairs) and FCDs. We will review how the 
boundary conditions influence the behavior of these defects later in this review. 

4.2 Dislocations. 
Elementary topological defects in systems with broken translational sym- 

metry are dislocations [ I ,  41, 421. Dislocations are of two basic types, edge 
and screw, with the Burgers vector being perpendicular to the defect core in 
the first case and parallel to it in the second case. A typical edge dislocation 
in the cholesteric bulk is shown in Fig.4. By fitting the layers profile around 
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Figure 14. Dislocations with different Burgers vectors and different core structure in the thin 
and thick parts of the cholesteric wedge sample with strong polar anchoring energy, as seen by 
FCPM. 

the line with the theoretical model [43], one can determine experimentally the 
penetration length X = which for cholesterics turns out to be '0.18~ 
[44, 171. 

Imagine that a lamellar phase is confined between two flat planes that are 
tilted with respect to each other by a small angle w << 1. If the layers 
are rigidly clamped by an appropriate substrate treatment to be parallel to the 
plates, and w << 1, the tilt results in a lattice of line defects-dislocations par- 
allel to the edge of dihedron. Fig. 14 depicts different parts of the sample as 
imaged by FCPM technique. The edge dislocations in the thin part are always 
of the Burgers vector b = p/2, while the edge dislocations in the thick part are 
always of the Burgers vector b = p. The dislocations are split into pairs of 
disclinations: a line b = p/2 splits into T and X disclinations and a line b = p 
splits into a AX pair of disclinations. The nomenclature here, introduced by 
Kleman and Friedel [45], is based on the notation X for the local director n, x 
for the direction of the helical axis, and T = X x X .  In X disclinations, the ma- 
terial X director field is non-singular, while in T disclinations, X is singular and 
T is not. Both types of lines are parallel to the cholesteric layers, except near 
the kinks, which change the level of the edge dislocations along the helicoid 
axis. 

The core energy of dislocation is a significant portion of the total elastic 
energy. The energy in the far field (away from the core) in linear theory is [46] 
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t 
where erf (...) is the error function, defined as erf (t) = 2 S exp ( - v 2 )  d v ,  

Jn ' o  
-&. the two core sizes 5 ,  and 5, are chosen along the two axes x and p = 4X& 9 

and z,  where the axis x  is parallel to the extra later of the dislocation and 
perpendicular to the dislocation line. The two quantities J, and 5 ,  might be 
related in a non-trivial way, depending on X and b. If one assumes 5: = 4X5,, 
following the idea that perturbation of length 6, along the layers propagates 
over the distance 6,-6:/4X along the z-axis, then P = 1, and 

The function Fff ( b ) ,  formally quadratic in Eq.(23), is in fact dependent 
on the model of the dislocation core. As suggested by Kleman [5], if the 
dislocation core is split into a pair of disclinations, then the horizontal cut-off 
5, scales as b; roughly, (, = b / 2 ;  at the same time S, ,  being a distance along 
the z-axis, at which the semiwidth x of the parabola x 2  = 4Xz  reaches p / 2 ,  is 
taken as independent of b. With 5, ;r; b / 2 ,  the far-field energy Ff ;r; & z 

$ is a linear function of b; the result implies that dislocations with large 
Burgers vector are stable against splitting into two or more dislocations with 
smaller b's. 

The core energy of the split dislocations is estimated [5] as a sum F, (b) = 
Fpair ( b )  + Ff of (I) the energy Fpazr ( b )  of a pair of disclinations separated by 
distance 2 Q e b / 2 ;  (11) core energy EL of the disclination lines themselves; this 
quantity depends little on b, but is extremely sensitive to whether the disclina- 
tion is singular (large EL) or not (small EL). As compared to the x - ~ / ~ x + ~ / ~  
pair, the core energy of the T - ~ / ~ x + ~ / ~  pair should contain an additional term 
" K l n ( p / r , )  that reflects the singular nature of 7- ' l2  disclination with the core 
size r, of the order of 1  i 10 molecular sizes [l  I]. 

For the pair, integrating the typical distortion energy density, 
1% between r = r,  and r = b / 2  = p / 4 ,  one obtains 27. ' 

where C1 is a number of the order of unity. F,' should not differ much from 
the estimate FL = C1 K = gK suggested by Oswald and Pieranski [4] for the 
singular core of a nematic disclination of winding number f 112, which implies 



C1 = n / 8  z 0.4. For typical p  x 5 pm and r, = 5 nm, the logarithmic factor 
in Eq.(25) is relatively large, In(&) = 6. 

In the core of dislocation b = p  split into a x - ~ / ~ x + ~ / ~  pair, the twist struc- 
ture is distorted over the area "p2, and the core energy is roughly 

where C2 is another number of the order of unity. Therefore, one expects 
FC,xx to be about one order of magnitude smaller than F,,,x when p  = 5 pm 
and r, = 5 nm. In other words, the b = p / 2  dislocation has a much higher 
energy than the dislocation b = p  split into a X - ~ / ~ X + ' / ~  pair. 

Why then b = p / 2  dislocations with a very large core energy appear in the 
thin part of sample? Qualitatively, the reason is that inserting a slab of thick- 
ness b = p / 2  into the wedge requires less compression energy as compared 
to a slab of thickness b = p. Obviously, the difference is significant only 
when the number N of layers in the wedge is small, and gradually decreases 
with an increase of N [46]. The balance of the core energy and the com- 
pression energy leads to a well-defined critical thickness h, of the cholesteric 
wedge with a strong surface anchoring; for h < h,, the dislocations are of the 
type b = p / 2  with a singular core and at h > h,, the dislocations are of the 
non-singular type with b = p. 

The situation drastically changes whenlthe boundary conditions at the plates 
a e  relaxed and the cholesteric axis can tilt away from the normal to the plates. 
Clearly, if the anchoring is sufficiently weak, the dislocation should escape 
from the system by going to the surface and disappearing there, FigAa,b,c. 
Fig.4a,b,c shows an edge dislocation confined between a plate with a strong 
anchoring at the bottom plate and a weak anchoring at the top plate. The 
Burgers vector is always b = p  and never b = p / 2  in softly anchored wedges; 
the core is split into a x - ' / ~ x + ~ / ~  pair. The defects are very different from their 
b = p  counterparts in strongly anchored samples. Despite the fact that the b = 
p  dislocation by itself introduces a twist change by 27r, it always separates two 
Grandjean zones that differ only by one T rotation of n. The fit is achieved by 
a surface desertion of one n  twist at the boundary with weak anchoring, Fig.4.. 
The dislocation slowly glides towards the softly anchored plate, FigAb,c and 
coalesces with the deserted layer, producing a surface structure with a layer 
insertion, 27r - n = n, FigA. Dislocations do not glide as straight lines: the 
motion involves formation and propagation of single kinks of height p, or pairs 
of kinks each of height p / 2 ;  the glide is hindered by a strong Peierls-Nabarro 
friction associated with the split core of the b = p  dislocations [46]. 

The existent theories [42] describe the surface-dislocation interaction in 
terms of the surface tension. Qualitatively, a dislocation creates a step at the 
boundary thus increasing the surface area and the surface energy. If this in- 
crease is smaller than the energy of elastic distortions around the dislocation in 
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bulk, the defect would be attracted to the surface. Although such an approach 
is definitely valid for many cases, including the free surfaces, generally, one 
also needs to consider the surface anchoring term. For a rigid boundary, the 
interaction is mediated by the anchoring effects: a dislocation approaching the 
boundary does not change the interfacial area but it does change the orientation 
of layers at the boundary. 

Anchoring effects in cholesterics are difficult to describe analytically: near 
the substrate, the director field has to accommodate for both the elastic torques 
setting the helicoidal twist and surface interactions that keep n along a specific 
"easy axis" (or axes) that corresponds to the minimum of surface anchoring 
potential. Here we develop the coarse-grain model of Ch anchoring, by calcu- 
lating the free energy per unit area of an interface, when the Ch "layers" make 
a small angle 8 (z) with the substrate located at z = 0. 

Under no external torque, the layers are parallel to the plate, as the polar 
surface anchoring keeps the director parallel to the surface. The azimuthal 
(in-plane) anchoring is vanishing. An external torque sets 8 (z + -00) = 8, 
far from the boundary. As the layers approach the boundary, surface anchoring 
modifies 8. If the surface anchoring is almost zero, then 6 (z = 0) is close to 
8,. If the surface anchoring is infinitely strong, then 8 (z = 0) = 0. The 
general case is considered below. 

The free energy density of bulk deformation; of a lamellar medium at scales 
much larger than the thickness of one lamella [I], 

includes the curvature K-terms associated with the splay and bend of normal 
t to the layers and the B-contribution describing dilation/compressions of the 
layers. The splay constant K1 and the Young modulus B are related to the 
Frank moduli of twist (K22) and bend (K33) of the director n by Lubensky-de 
Gennes relationships [47]: KI  = 3K33/8; B = (E)2. The bend (from 
the point of view of t) constant K3 can be derived from the Kats-Lebedev 
theory [48,49]: according to E. I. Kats, K3 = el. 

With t = (sine, 0, cos O), the free energy per unit area of the boundary in 
the coarse-grained model of CLC is 

where the last term is calculated by assuming Rapini-Papoular anchoring po- 
tential for n, W, = wpn:/2, and then averaging over the in-plane director 
rotations. The contribution K1 sin2 ~ ( g ) ~  can be neglected for 8 < < 1. Min- 



imization of Wt yields the layers profile near the boundary, 

Wp sin 10, ( 
t ,  = sin 18,1 1 - -1 (29) [ 2 ~ + W p s i n 8 , 1 e x p ~ ~ s i n 8 , ,  

and the coarse-grained 0,-dependent anchoring potential for t that has an easy 
direction perpendicular to the bounding plate (WCh (8, = 0) = 0): 

1 w P m s i n 2  8, 
Wch (Om) = 5 2- + wp sin 10,l. 

Depending on 8, and the material parameters, WCh (0,) might be approxi- 
mated by either - sin2 0, or - sin 10,). The first form fits well to the ex- 
perimental data on weak layer undulations [50], while the second one is better 
suited for large )8,( and Wp, when WCh (8,) is proportional to the number 
of layers crossing the boundary [51]. 

The interaction between the dislocation and the surface is determined by 
the free energy functional for the displacement field u (x, Z) of the cholesteric 
layers, written here in the linear approximation [42]: 

If WCh (8,) were of the type - sin2 8,-O&, then all the results of the ex- 
isting linear model [42] could have been applicable to our case, with simple 
replacements 0, + y and WCh (8,) + ay2/2, where a is the surface ten- 
sion coefficient at the free surface of the lamellar phase and y is the tilt of the 
free surface. One of the results would be that for a > m, the interaction is 
repulsive and for a < m it is attractive. However, Eq.(30) generally de- 
viates from the simple WCh (8,) -O& form and one has to resort to numerical 
analysis, using a = ~ / m ~ ,  Fig.15. We compare the results to the 
"neutral" case (no interaction) in which Wo (0,) = J m 8 & / 2  [42], see 
the line marked a = in Fig. 15. For Wp - 0.8 x J /m2 , the curve 
WCh (8,) is below the curve Wo (8,) ; meaning that the interaction is attrac- 
tive. In contrast, when Wp - 4 x 1 0 - ~ J / m ~  , the interaction is repulsive, 
as WCh (8,) runs above Wo (8,) for 0, in the region of practical interest, 
0, < 0.4, Fig.15 (note that the curves WCh (0,) and Wo (8,) might cross). 
The data are in good agreement with the experimental observations [17]. 

The consideration above of the dislocation lattices in the strongly anchored 
cholesteric samples is valid only for small dihedron angles, w << 1. What 
happens when w increases? Initially, the density of dislocations increases lin- 
early with w (-w), but the process should stop at some critical angle, when the 
dislocations merge into one grain boundary. It turns out that in reality, prolifer- 
ation of dislocations is interrupted by a lattice of FCDs. In the last section, we 
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Figure 15. Cholesteric anchoring potential as a fhnction of the angle of layer tilt to substrate 
for different polar anchoring coefficients W,. 

consider how the FCDs can relax boundary conditions in different geometries. 
We will deal with the smectic A phase; the director n is normal to the lamellae. 
The reason is that the FCDs are stable at scales of deformations larger than the 
interlamellar spacing and this spacing is much smaller in SmA (nanometers) 
than in Ch (micrometers). 

4.3 Focal Conic Domains: Surface facetting and Grain 
boundaries 

Textures of lamellar phases often show focal conic domains forming large 
families with an iterative fillings: smaller elliptical bases are embedded into 
the gaps between the larger ellipses. The first model of space filling with FCD 
has predicted that the iterative filling continues down to the smallest spatial 
scale possible, with the smallest FCD being of the size of penetration length 
A. The result seems to be natural, as X is the only characteristic length in a 
lamellar bulk, close to the thickness of one lamella. However, experimental 
onservations clearly show that the hierarchy of space filling has a macroscopic 
rather than.microscopic cut-off, see e.g., Fig.16. 

The physics of macroscopic residual regions can be explained most easily 
for a somewhat different case when the FCDs serve as the surface "facets" 
at the SmA-isotropic interface. Consider a large SmA droplet suspended in 



Figure 16. Texture of focal conic domains formed by ellipse-hyperbola pairs (the elliptical 
bases are in the plane of observation and the hyperbolae are perpendicular to it). The smallest 
domain is clearly of macroscopic (tens of microns) rather than molecular ( I  nanometer) size. 

Figure 17. Toric focal conic domains serve as facets of the smectic A droplet suspended in 
an isotropic matrix that favors perpendicular orientation of smectic layers at the interface (a). 
The space filling scheme is illustrated in parts (b,c): a FCD is inserted instead of the spherically 
curved layers (b) to change the surface orientation of layers to perpendicular (c). 

an isotropic matrix. If the matrix sets normal anchoring conditions for the 
director, then the equilibrium solution is clearly a concentric system of smectic 
layers with a radial hedgehog in n. Let the boundary conditions change to 
tangential, n being parallel to the interface (and the layers perpendicular to 
it). Experiments show that under tangential conditions, the droplet is filled 
with FCDs of degenerate (circle-straight line) type. The circular bases of the 
cones are located at the interface while the straight lines end at the center of the 
droplet, Fig. l7a. The reason is that the molecules within the circular base are 
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parallel to the interface, thus reducing the surface anchoring energy, Fig. 17b,c. 
However, one cannot cover the spherical surface of the sphere with a set of 
circles. The filling pattern is similar to Appolonian tiling: the gaps between the 
largest FCDs (of the size of the droplet radius) are filled with smaller circles, 
the remaining gaps are filled with yet smaller circles, etc. The pattern is fractal, 
although within a rather limited scale of lenthes with the maximum size being 
determined by the size of the sample and the smallest size being determined 
by the surface anchoring and bulk elasticity, as we shall see below. 

Clearly, the iteration process stops when the elastic penalty of introducing 
the FCD becomes larger than the gain in the anchoring energy. The energy of 
a FCD of an arbitrary eccentricity has been calculated recently [I] to be 

-112 where K (x) = S,' [ ( I  - t 2 )  (1  - x t2 ) ]  dt is the complete elliptic inte- 
gral of the first kind, e is the eccentricity of the ellipse. The core energy of 

the elliptical circular base can be assumed to be proportional to the perime- 
ter of the ellipse 4a£ ( e 2 )  (the core of the hyperbola softens out at distances 
of the order of the major axis of the ellipse away from the ellipse plane), 

2 -112 Fc = a14aC (e2)  K1; here E (x) = J; (1  - t ) ( 1  - xt2) ' j2d t  is the 
complete elliptic integral of the second kind; a is the major semiaxis of the 
ellipse; a1 is a numerical coefficient of the order of 1. For a toric FCD, 

with the core energy FTc m a 1 2 x a K 1 .  Comparing the estimates of the elastic 
energy - a K I  to the gain in surface anchoring energy -a2 (uII - uL)  when the 
part of the spherical packing of layers, Fig.17, is replaced with the FCD, one 
obtains the radius, usually macroscopic, a* > X of the smallest FCD in the 
iterative filling [52]: 

where ol and all are the surface anchoring energies for molecules perpendic- 
ular and parallel to the interface, respectively. In Fig. l7a, the typical size of 
the smallest FCD is few microns. 

Now we return to the problem of tilt grain boundary. Here, each FCD 
replaces a part of the grain boundary filled with dislocations. A rough estimate 
of the energy of dislocation-relaxed area of grain boundary is -wBXa2; while 
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Figure 18. Two geometries of tilt grain boundary formed by an array of FCDs. For small 
angles, the residual regions between the FCDs are filled with dislocation lattices; for large 
angles, the resudial regions are filled with curvature walls. 

the energy of the inserted FCD is -aK1. Therefore, large FCDs will fill in the 
grain boundary, then smaller FCDs will fill the gaps between them, and so on, 
until the FCD bases becomes as small as 

the remaining residual areas between the FCDs will preserve the structure of 
dislocation grain boundary. The residual areas can be very large, a* >> A, 
when the angle w is small; for more detailed calculations, that take into account 
the particular scaling behavior of the FCD hierarchy, see [53]. Note also that 
when w becomes larger than approximately 7r/2, then the dislocations in the 
residual areas are replaced by curvature walls. Figure 18 illustrate the two 
geometries for tilt grain boundaries. 
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5. Summary 
We discussed topological and elastic properties of various topological de- 

fects in liquid crystals and demonstrated that the restrictions imposed by bound- 
ing surfaces are of prime importance for the stability of the defects. For exam- 
ple, a nematic droplet emerging from the isotropic phase might contain stable 
topological defects when it becomes larger than some critical size determined 
by the surface anchoring and elastic constants. An edge dislocation in a ID 
lamellar phase (cholesteric, smectic) might be repelled from the surface or at- 
tracted to it depending on the strength of surface anchoring that imposes some 
well-defined director orientation at the surface. Although many aspects of de- 
fects in liquid crystals are well understood, there is still a number of important 
problems to explore. One of the most important is that of defect dynamics 
which we did not discuss here. New experimental techniques, such as the fluo- 
rescence confocal polarizing microscopy, are expected to expand significantly 
our understanding of defects in soft matter. 
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